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Host of the mathematlcal techniques that are in use today were developed
to meet practical needs. The erementary arlthmetlc operations have obviols *
uses in everyday life, but the mathematlcal concepts which are lntrdauced at

" ~the Junior high school level and above are not as obvwously useful.

v The School Mathematigs Study Group has been exploring the possibility Y
of introducing some of the basic concepts of mathematics through the use of

some simple science experiments. Several unlts were prepared during the

siung of 1963 and were used on an experimental basis in a number of clrass-

. rooms during the following &ear' On the basis of the results of these trlals,a
//////these units were revised during the suwmmer of l96h K . ¢

e ﬂ?. This text is de51gned to” be usable with anJ mathematlcs textbook in’
o common ase. It is not meant Yo replace the textbooh for, tne course, out to
o ©

supplement it. Prev1ous acquaintance with science on the part of the student

. 1s upnecessary. The sclentlflc principles lnvolved are fairly simple and

* door into a new domain in mathématics: measurement 1nequallties,-the number'

%;? 3 line, relations and graphs. Ve hope that student learnlng apd understanding
v will be improved through the use of this material. . N ’
;';', N The experimehts have all been done <n actual classroom situations

x.: Every effort has been made to make the diréctlons for the experiments as

s "clear and simple as poss1ble. The»apparatus has been kept to a mlnimum.‘ -

° ) -The writers s1ncerely hope that this approach tb mathematics will

prove hoth useful and 1nterestiﬁg to the student.
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. ‘bhe mdthemati cian.

. .timate ang far;_reaching. W,ithout mathema?ics 'the scientist would be yneble

e . ) ; kd . .
/ g Cl " T
. . . Chapter 1 ‘. PR °
o - e “ . o C
' r AN EDCPEBDIENTAL APPROACH TO ‘I’HE REAL NUMBERS ?
4, - o St L ‘}, . - . .
N . "t [
1.1 Int'roduction " . Lo .
.: P . . ,d.

Much of thé-development of mathematics has Dbeen motivated by the
sdiences, tpere w&s a_need to explain andz»int;erpret the ohservations of
The mathematics that
hes been developed to satisfy‘the needs of the scientist is generally carried
far 'beyond the imedidgte situa+i n that prompted it This is the work of

These mrther-extensn.ons of mathematics ofteh suggest .
‘flew theories and eXperimental jgossn.bi:lities to the scientiste~

scientific phenomena. This need continues even today. .

> o - s

.. s .
_ In short, the con:n'ection between mathematics and ‘science isg.both in-
to sygtanati‘ze and interpret his experiments. He éould not generalize his -

results and meke predictions for the, outcome of future experiments. Without

.
stimulation from the scientists B mathematicians would work in an unreal world

-

- A . IR R T

of their-own design. s 7 .o -

In the work that follows, mathetatics will be developed to meet thé -
partieular needs of a set .of expdrimentgl situatiens. In each case this
N mathematics will arise-from an experimental setting. Once the appropriate .
Jnathemat*ical descriptions of the scientific experiment are found, a numbeg;
‘In this
way we will develop‘our mathematics in ntuch the same way that mathematics has

'been deVeloped in th.e pest and continued to be d eveloped today,

of logical extensions of the mathematical. structure will be made.

%

seientific background is required. R .
T v ' ‘ M 5
7 - . .o . v L. -
. . _ v . . 1 d . A P )
1,2  The Loaded Béam S A N .
. Once we have decided to center our investigation upon some particular “

—

aspect of nature, we have to make a careftil pnalysis of our- ‘proposed experi-
i mental procedure to determ:n.ne the factors that might pos&ibly influence our -

-

! results. Our first experiment in ,the*physical sciences will involve the *
Even a gystem

as simple as this one is. susceptible to a wide variety of influ nceg.

- “4 o

bending of a "beam s fixed at one end and loaded at the other.

“

%
v

)
PO

te

1

Although much ..
- of the spirit of science will become ev1dent as_we proceed, no particular .’
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'\ meter stlck 50 that the pointer is in

>

- .
At ~

N 'l'he gmount 'of bending will obvidusly depend on the ty'pe of 'beam" we choose
‘and the way we load it. Dj.f?'erent clamping points for the*fixed end and
different points for loading the free end will also influence the amount of
‘bending. Ft is .important to permit “ho more thah one of t,hese conditions to
influence the bending of the beam at any one time. All other’ conditions must
not\be allowed t':'g change. L , '

A 15 inch flexible 1aler may be

clamped to the desk with a MC-clamp"

_and \,\§ed ag .2 Yeam. (See F1gure 1.) -

As £he beam is loaded fram the free end, .
it will bend.- To measure-the bepding

of the beam, we wvill simply recoza ‘the .-
changing posiftlon of" the free end of

the beanm as’ the Load is change%. You :
may £ind that some form of a pomte‘f
.arrangement, such ag a s‘traighﬂt pin
,i"ésténed to the free ®nd,” will be
helpfu'l . ’

Place a p1ece‘ of- masklng tape

over the humbers on ‘the meter stick

"in g&ch a.nay that the gfaduations of
the scale are not covered (Figure 2).
Suppor; the meter stick perpendlcular
tc th floor S0 tha+ the positlon of

theé end of the beam can: be read on the
scale\as the load chahges A(Ljust the

line with one of the centlmeter mark-:

ings on ‘the stlck - On- the mas}t-:.pg .
tape oppos‘.Lte this mark, write O. :

. Startlng at the 0 mark, dyaw two arrovs 1 a

...along the length of the ?neter stick, . ‘
each ex?e“ﬁding in oppOSlte d1rections.
La‘befl. the arFow wh:.eh points up . }xp

" and lebel the bther‘ arrow “down". -Use

‘bhe counting nwnbers “to number the

_ millimeter graduatlon on the scale. It

is enough“to write numbers at: 10-mm




intervals in the upward and dpwnward

; dirt-ctions fram the 0 as shown in |

Figure3 . .

i Theré should be.a smagll hole in
" tne }uler "beam' jabou?l’: one-half Ihch™
from the free end. Thread a piece of
nylon string through this hole and

) around th¢ ruler in such-a way that

~ the string is firmly attached to the .

;. Tuler and about two féet of string

" heng free on either side of the ruler.

(See Figuze k.) .

! Suspend a single pulley above -
~*  the beam. A ring-s‘tand or some other
similar supﬁorting device may be. used

. < for this pu1£>0se.' Pass one end of the

",‘*, ree string up .over the- pnlley so that the

S T POk

R S AR

.masSes may be hung from the free end
of the string. Allow the other end ®
- F of the string to herg below the end.,
of the ~beam so that masses may glso be

L hung from thls end (Figure 5). x
.
,ﬁz .Now hadg a 30-gram mess in a

downward direction Ffrom the load point

) and take a reading of the pos:ction gf
the end of the bearn. Continue by, add-

‘ ing 30 grams at a time, until you have ,

. at leaSt 10’ readings. Benvery careful

- *in 'reading the position of the free

g > en@~ o the& Béad. Alw'ays try to ,
"sight" along the pointero in the same !
- way' Make youi- position reading to -
the nearest m:.llizheter. )

i

4 - o

. - Remove®the loadg‘frcm the beam ) ~
v and repeat the experiment by hanging .
he masses from the pulley, ‘adding ,
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- top to' the. load pomt.

‘ ‘
P v : .o - 3

s
P
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-

least 10 more ‘readings Again make your position reading to- the nearest milii-
meter. : °

’.(‘

1

You should record your ‘date in an orde.rly fashion.

o

Along with the load
values and the position reddings, yo¥ should record such things as the ty'pe of”

beam used and its length, i. /e/.,_.that part which e;:tends Sutward fran the table
In recording the position of the end of the beam that

- is associated with each load, & tabular arrangement will have the most-meening.

For- example, you could now label your columns fox data ag shown in Figure 6.

. - . :
- THE LOADED BEAN EXPERTHENT w o )
.. e . I
. Type of Beam . ) Length of Beam %
Load hung down, " Load suspended;.grom pully R
Load Position Load . Position '
l } ° P ‘e K . F 4 I~ p} w | s .
(grams) (millimeters) {grams) (millimeters) .
- ’ dl\'
£ v -
| ' ) . . —‘\ +
— ?
- ' = .- .
) » pe
. ~ ” - T
- . s ' A 1 .
Figure.6 / -
"Ei?T\experiment——the—beam vas defTected both upward and downward.’ s

Our scale had been graduated to tell us how much the beem bent, dbut there was

no easy not/ation tb tell the direction of the bending. «~ We could Just be care- a
ful end always record our reading as; Y2 m up" or "6 mi down", but aver & .

large number of readings this Sotation becanes-quite clumsy. But more impor- A

tant than Just‘ eagse of notation, this idea of direction opens up & new system
_of numbers which 1s npst useful to" the scieptist.

R

D e _

It you look at the scale you have nede so far, you should note that 1t
is 1 nothing more than a number line son which the numbering extends in either
direction from the Q. In the past, when we have ‘ide munber lines, e fndicated'
that some point on the line wés to have a coordinate

to have the coordinate 1. From this we were able to ¢

and some other point was
nd po!nts on the linee

whose coordinates were the counting numbers. We werg } 1so ,ab]%;,to talk about "‘
(c - . " i e A{—, N '_'. e
. R !‘- ‘. 'P‘ - . - R ,
- ‘ e .~
2 ) l i— - . - ¢ 7 *
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. T LAY . . . o

o : . r" . ,
the num'bers 'assigned as the coordinates of points between any two successive ..
For aca.mple, the point, midway between O and 1"has

po‘lnts already Ioeated .o

posite direction along this line. This is a portion of the line"to which no

numbers have as yet beqn assigned as coordinates.
» tension of our set of numbers which will assign numbers as the coordinates of

A
LR N . .

these, points. & ) . . . . -

! The'REal Number Line .

et . - N . B

:' the coordinate . ._ In our experiment, however, we also proceeded in the op- -\\‘ )

Let us now consider anyex- !

2 The humber line used in the experiment should 1ook similar to the number .

. );‘;' - o < ) . 'line ih Figure 7. However, the mber-
ﬁf“ ". . ’_ . . ‘130 ' v line does not have to be drawn in a
“ .t 7 {20 * vertical positlion. “In fact, JAn text-
:;.\* . ‘ c o books, 4t 4s most often shown 1in. a
W ) ’ ey lo. horizontal d:};rection .
’ - . Y The idea of distance has been &
) : T20° strong underlying theme in the con-
3‘ e _ T30 - struction of'a number line. ILet us .
o ] \ V ) keep this idea and find a point on
Lo .. rgure 7 this line such that the zefo point is |
; ": ,just hglf-way betwe?:n 'som}v new point and the unit point, as in Figure 8. =
o0 . .. ) 1
1 sg\ & - ., R ‘ T
é ' ‘“;;:, I - pgzgt N _— ’ ©
§ ‘ ; o . ) . .
%a«. i‘.- o Figure‘8 ‘ L .

=
T

et < R
A
-

3 Af...:
¥
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e
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_ Now, the distance from ’che ney point to the zero point is the same as the dis-
tance from the zero point to the unit point. In &t*her words, the hew pdint is
also one u.nit of distance frem £he zero point. HoweVer, we have already 'used-

the symbol 1 for the coordinate,,of the unit point-.and to use the same symbol

,ﬁ)r the coo inate of a,,second peint woéuld be ver%f confusing. Let wus then

a,gree upon ‘a new symbol for the coor&in‘é.te of this point. The hew symbol .

’ should‘ tell ‘us that the distance of the point from°the zero point is-one unit

but it is in a direction oppositefto that/of the,unit point. The symbol that

has been agreed upon for this goominate ig "-1" (read negative one 9.

oA, I N

We might ask in which direction to proceed"Wi'th the’ positive numbers and
“- lJ .a'.-’ ,,') R v

PR DN
-

A
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»

with it and be consistent.

L) - \

whiclr the negative. This is an arbitrary choice.

could start at, the zero point and place the unit point to the left.

That is, if we liked, we
The

How-

E

negative mumbers would then be placed to the right of the zero, point.
ever, }-f we had placed the unit point to the right of the zero point, the,
whole numbering progedu;e onn,the line WOuld hgve been reversed, , Elther

method is acceptable,but ‘as soon as one method is adopted you should stay .
“The method that is, used most often is to place ) :

- %he unit point to the right of the zero point. T .

.~ 4

. number which could ‘be expressed as a-fraction having a whole qmber as a

Q

ERI!

iAo providody i

. tive integers.

. .
TFhe set .oi‘ all numbers Ysed as the coo‘rdinates of points on the number
If the unit point is, to the right of
zero, then the numbers to the rlght are called the positive real n&mbers and
In this

language, the numbers of aritimetic are calledsthe non-negative ‘real numbers .

- v r -

"There are two points on the number

line is calledthe set of real numbers-

te numbers to the left are called the negative real numbers:

Eaeh countmg number has a negative.
line for each distance.
is one poingtwé-u.nits to the right of the _zero point, and a second point 3 units '
to the left. The coordinate of the first point" is 3 and the. coordinate of the

second point is -3¢ For every number of arithmetic, except zero,-the-set of
! '8 ©

If the distance from-zero is tg be three ‘units, ‘!;here

real numbers contains a negative number. For example, for every counting .mum-

“ber in the set of re‘al numbers,, there is also anothet number in’this set which

/o

is the negative,of the counting’ number. .

3 13

Tne number zero, the counting numbers, and the negatives of the counting
(on -3,
-2, -1, 0, l, é 3, «++}. ‘Another néame f¢r the counting numbers is the posi-

numbers all together make up & set of numbers called the integers,

'I'he set of all negatives of the counting numbers ig cal.led the,.

4 . 4

negative integers. )
. \ ° . 2

You may r*ecall that a rational number of arithmetic was defined ,as any

-'\
¥

—

-
numerator and a counting number as a denominator. Hence, O, 3, ]lz, 5 and ..33...

are all exampfes of such rational numbers. It is possible to express 0 as

2

1
tegers. The nmnber H is already expressed in the fom stated in the defini-

tion. It is possible to express .5 as §, which also satisfies the definition .
The decimal fraction 733 ... , which is & nonteminating,
repeatingﬂdecimal fraction, can be ekpressed as ;, and dgain we see that the

-(i)"and 3 as . The set of rational numbers does include the set of all in-

of a rational number-

definition of a- rational;nmnber a.pfplies to this number.\_
3 1 . ¢ . . - X -
For all rational numbers, with the exception of zero, there is a negative ’

- N v Y

3,3




L .
. .

of that rational num’ber in_ the set of ‘re&l nmnbers. The coordinnte of the *
point midway between «]l and -2 is - 3- . The distance of thepoin,t to the left
'4 , of zero is the same as. the dfstance from ze1§o to the \point whose coordineate is

s 3- (mgure 9). v ' , ) ‘ i

N \ !
j——4a ——ﬂn—gl > . ,
» é ' . - . .
I | —1 .- 1. L S B -
Y’&!b’"ﬁ’»"}*“’?q}(’" Lr ¢§Q~ v V. 3'7 ¥ gié -'1 ]16 -3 1] ‘é );' % t
’, - -3 = ' L .
=h ¥l -2 2 ed = = 2 = = .
,:l‘_ on ""') 2 3 2 "2 3 1‘ 2 0 2— . 5‘2. 2:,.2 3 2. h‘ “
™ Mmj_ :A‘ . . . . .r R * ' ; ) .
T T T~ b * .o
* . ) n/v
o ,»Bach rational number is now assigned toa point of, the number line, but ' o

there rema:?n many points to which rational numbers cannot be assigned. The '
. numbers associated with these points are .called the rratignal num’bers. . Ir--
: rational numbers a.re also r.eal n\mbers. Hence, ve can regard the set of real

' mmbers as’the comﬁine& set of ra}:ional and- irrational numbers. - .. )

Al . ./’X LTI

. Where are sgme of the points on the ngmber +1ine‘ yhich. do not t:orrespond
to. rational. nmn'pérs? There are a great many such mnn’bers , but it is difficult
.. to prove that eny. particular one is irrational. Onme example o 8 real number
whic cair be proved to be irrational is v’_ that number which when multiplied

by itgelf gives 2. This number ig called "the square root of two". -

“a'- square root of
" of the :l:jo'mulaa fér the“avea of a right triangle’ and the area of a square.
You will recall that the area of a right triangle is one-'-half the product of
the lengths of two sides of the triangle which form the right angle: If ve ° J
have a right triangle such that both of these sides are & unit length (Figure 10) .
then the ares of this triengle 1s 5 (1)(1) or 3 .
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Now if we take four of these ‘briangles and fit them together, like the pieces Sf
of a jigsaw puzzle, we notice tyt they form™ a square (Figure 11). Since each
triangle had an area ‘of ;, and thére are four such trlangl,es in the square,

the area of the square ig (-), or 2. The area of a square is the length. 5t &
s:_f.de multiplied by itself. ) - . g

Figare 1 T-So-o .

In this case thery the length of the side of the square-is- the number
which, whén multiplied by its elf, is equal to two. We have already defined -

% . "%his to. be{é . In order to» locate-a point on the number line for 2 2, allswe .
have to do is construct a right triangle with the two sides of the right angle

' . one unit in length and transfer the 1ength of the: third sidé\to our number
line (hgure 12). : - .

'L-

Tb,is we can do by dr'gzng a circle whose center is at the point 0 on the number
+ "1line and whose radius is the same 1ength as the third side of the triangle.

* % This circle cuts the number line in two points, who‘se coordinates’ are the rea1

mmbers ‘/— anE -2, respectively : .. 7

' . IWe hav‘é avgided trying Yo prove that the’number ‘f. is,not a rational num—.-
ber. Sueh a proof does exist and you will probably study this proof in a later
cou.rse. At this time, However, you might try to test knmm rational numbers by
squaring them to see if any product is exactly 2. Some numbers you, migﬁ ‘E”he"

R

-are 1.1; 151 and™1.l1k T Lo !
s LYY

e There, are many more points on the’realo number line vhich arggirrational .

. 1
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numbers . Scme numbers which gerve as cdprdinates of these points are V3 , X

and -¥5 . 4 ; , - R R .
A ‘,‘ ‘ 1 , ) ' , K
\ R 7 ‘ercise 1 o - : .
- z R . v, N ~ ., ) )
- s 1. For each of the following, construct a number line and determine the
: _ points whose coordinates are as follows: . . o
;:: - * ' . 1 T
e . (a) "O, 4, 2, - Pt -3 : . .
- . . A
: (0 .3, -3, 2.5, 2.5, 3 ' L A
) % 5 5 -
M. (C) 3 - 2’ 2, 6 g s
. (a) 2, - V2, 22, 3/5, -a2f2 | T S -
. (e)/§+1,/§-1,-(/§+1),-/§+1 -
. 2. Arrange each sgt of three numbers given below in the order in which they
~ would appear on the number 1ine, reading from left to right.
L 2 3.k AR
et $B) 10, 8 B (e 2 3’% _ ‘
e T ) ~{p) L, 2, ‘,"" ‘ . (£) E, "/_, 1. 13 ‘ ’
oo . s ) . ' S
r'Y (e) "1; -2, -3 ' e, (g) -2.24, "/_, %
".'.“_' (d) % ; ) (n) 7, ‘2 65: ]53 - " .
- 3. Which of the Pollowing rational numbers is closest to V2 7 ) ) l
PR (a) ' ' . o T
o 17 ST AN
% . (b) 12 o . . ! 1 gw ? \
A T o ’ S : ;
ir (C) 5 N N )’ . s L - v
: % y o
3! . (d) 70 R R

: 14 Ordering ’tfne Real Num IS . .

" . e X % » ’ "

. . The number“line which We have drawn is & physical model of the set of

N h P .
. real num‘bers. As we contimue our discussion of. the real numbers, let us re- (L

call’ some of the properties of the positive numbers. ’l'hese properties ‘have ! .

U O S P W

already been well established and we want to make certain‘-that.they are not -

4 AL T

i altered in: 'any way. .
s N ! '.I'he first property in which we are ‘interested is the- property of order
e e
¢ v " ' .‘ N -
i ‘ . '-' ’ o 9 ';' f) . ' -
» el {j - L} .w
<, ‘
’ . i / -
. ¢ & - .t
" ‘o ®
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of the positive numbers. We know what is- meant by "2 1s less than 3". In

) \ tems of our physical model, this means -ti(t " 18 to" the left" of three. In

fact, if a and b are two positive numbers, on the number line, and a is to the
" 1éft of' b, then a <b (a is less thah b). . /)

N
.
«
A
-
-
-~
~e
-
i
s
;
$

’ . T Figure 13 ’ . o L
L « E ATV J QI
. As already stated, we ax'e i’nterested in keeping this _property over the
set of all real numbers . ‘I'herefore, our pro‘perty can riow be stated

’ 4

'/ ) o "Ii‘ 8 and b are two real numbers on the number line and o,

—————— i T e

: “la is to t.he left of b, -then & bt ' P

?

If we cons:Lder the numbers =1.8 and -2.3 and ‘dfr/eir relati,e_mgitiOns
on the number 1ine, we note that the point whose: coordinate is -2 3 is to the
“Yeft of the point whaose coordinate is. -1.8. Hence, -2.3 < -1.8. ,
B N ) ‘
If we are not certain oi%‘xe position of two numbers on the number line,

¥ve,can be certain that the following property holds. . : ) ’

-
» - g 3 ’

) If a and b are real numbers, then exac‘tly‘ one 'of the
+ following is true: . *

i3

. a<'b, a=Db, b<a

This property is called the camparison property and holds for all real

. mmbers.” For example, if a = -1.8 and b = -2.3, we have already established

. . that b <a. ] ‘ . . o
’ I { ~ . '

So far our ordering property has allowed us to compare only two real
numbers . To extend our ability to. order numbers in sets of three or more, we
' Antroduce the transitive property.

2

g

If a, b and ¢ &re real numbers and if a <b and b < c,
3

than a < c. o Ki

¢ ’

., By our definition of the relation <, any negative number is less than zero,

and zero is less than any pos:Ltive number. Since we have asserted that the

transitive property holds over all real nlml{b‘eérs 5- w‘e now conclude that any 5 C
- *“négatﬁfe’nmber is less than any positive number. ’

s ‘ ’

- . 'Ihe‘ﬁi‘“ﬁi'tive property can also be used in determing the order between

. : .

+ L . *

x L VRS

v

.
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For example, which is less than thd other,

two numbers .

- 19 &6 ? . ' ’ .
: 397 BT e
s We notice, after some deliberation, that l% is approximately 97, ?ﬂd 13
. . 1is approdmately 5.07 Th'e‘refore L <58md 5 <33 85 | “Froul the transitive
S s i PPTOXImMERSY, Ar5he . 357005 3y 13 8 T
E property it follows that . ¥ f
' l&h. < ‘\e.é - o ’
; - ?39 ' 13 h . 66 ’
-, We cﬁn now use this information to order the numbers - l329— end - 13 Since °~
'zt has'already been established that —325 < _6% , we kndw that 3 is to the
right of —29— on the number line. This means that <= gg is+*farther from zero
ik 66 o L 66 . _ 19 .
. than —329—, s0 - i3 is to the left of - —2— oh the mmber line, and - 13 329—
Our last example shows us that if a an(}/ b are both positive numbers and
a<b, then -b < -& . : C/ .
o \ . -
. ([‘ ! -
‘ ~ Exercise 2 o .
. .

: ' T2 667 )
(8) 0', 56 ‘ ) . (f) g)..l:O.,ow - ] R L
: (®) 0, -7 U (8) ~f =15, .
st w 6 »
% 1l
: (c) 333, 33 3 3 ;
¢ v ' (d) -50, -100 n) -3.1k v

e

1

of ;2 27
(e) ;%, 5%

hre

f ’ 2." 1In the blanks below, 7>, to meke a true
sentence. e ‘ -
T .
8 3 & Y | .
£ () 3 10 O 2
5 ) 3 (g) 2 +3 3+ 2
?2: ‘(b) 5 < h
b ‘ .
v, 3. 73 1 -
b (-5 —=% " . ®) % -2
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. '3.\ . Use the: transitiVe property to determine the ordering of the fouowing

. groups of —'bhree real numbers-. ;

(a) L 3 (e) 32, r@, +m2
. (v) Iy T 2 ‘3 (f) - é‘)"§') ‘]lf , ) ,
(¢) 1.7, 0, -1.7 (8 1+5 1+ @3 1+3% .
@ -2 .32 L
B (d) 15)‘ 15) 15 ‘ L

'k, State a transitive property for ">" and illustrate this property with
‘“« Problems 3(a) and 3(b)

5. Sandy end Bob are seated on opposite ends of & seesaw, and éandy s end
of the see‘sa;r comes slowly to the grou.n’d‘f - arry replaces Sandy at one
end of the seesaw, after which Bob's end of .the seesaw comes to the
ground. Who is heavier, Sandy or Harry? ¢

o

1.5 Opposites ‘ ' . N
When we loaded the beam from below we noticed that it was deflected ' ’ '
downward. The pulley vas usied when loading the beam from ebove and this type
of loading resulted in a deflection of the beam if the opposite direction. °
If we refer back 'to the data we collected /(n Section 1.2, we can consa&ler the
amount of deflection that resulted when gqual loads were applied from below
dnd from above. What dom'rward deflect on resulted when a mass 0%50 grams
was hung from the beam? How does thig deflection compare w.ith the deflection
which resulted when the 150-grem mass{pulled up on ~th’e_ beam?

e

N ¢

. Since we have ﬁﬁalreadyi developed the conc:}vt of ?egative numbers, we c;n )

agree to refer to forces applied in the dovmward direction {he direction of
the earthls gravitational field) as positive and férces ap ed '15 an uimard
direction (against the forte of gravity) &s negative. "The effect of this
force was deflection of the beam. In order to be 3onsistent we should use .
Positive numbers to refer to downward bend and negative numbers to refexr to
upward bend. '

[y

The answer to our question might now be: “A load of 150 grems causes
thé beam to bend 16 mm while & load of -150 grams causes the beam to bend
-16 mm," In either éase the amount of the deflection is the seme. We ca.n .
think of this as a pairing off of- equal distances,ion the number line from 0

o and on opposite sides of 0. Thus, -16 is at the same distance from 0 eas is .
6. What number is at the same dista.nce from 0 as 1 7. Iﬂ you "choose any
H

<

oo 12, . :

- A
< ’19' ~ LN




‘s ,‘-point on the number line, can. you flnd 8 point at the same distance from O
%

. and on the o?te side? . ! . ‘.
o ) "Sinc.e ’ two nuﬂxbers in such pairs are on opposite sides of 0, it is .

natural t:o call’ them opposites. The opposite of a non-zero real number 1s .
the other real number, which is at an‘equal distance from O on the resl number
line (Figu.re ). Since tﬁere is no other point tha.t is opposite the number

. 0, we- can consuier 0%to be its owmn opposite, s “

T S ! s .

-

s

X

J

: . &
g .

-2 is the

Let us cdnsider same typicgfreal numbers. We have saidl that

x

opposit:e of 22 What is the oppogite of - % ? '.Our discussion leads us to .

. However, the notation we have usged to indi-

agree that the answer must be :2L
cate that we/are referring to the\ppposite of a number has been to place a
negative symbol to the left of the ymbol for the number. -'I'his means that we
might refer to the opposite of - % a -(- —) This “last symbol would be read
"the negative of & pegative one-haj We corfclude then that " %is the

is conclusion can be stat‘gd in & general

opposite of the opposite of% "
way: . ' R ‘ .

1 / ‘c .

e For every real number &, .-(-a) = a . .

<

This process of determining tﬁe negative of any number can now be used

to simplify any notation using the negative of some number. For examglej_q’(

4e x ~gimplify the expression - [ ( 5)] l If we consifler the meber (-(-3)] , our

.. genexal rule tells us that this nu.mber is the same as the number 5. Replacing

.

RIC .- Lozt o
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=10 < -7 .

< v

) . : e et .,

. . ®

- .

5)] with 5, the problem is reduced to - [5] which, of course, is =5 .

" o

’

In the lagt section, the statement was made that if a-and_b are hoth
positive numbers and a <b, then‘-b < -8.
of any twd real rmmbers if we know the order of thelr opposites., A similar
argument could bé used with two negative numbers .

We can now ask about the ordering

For example, we know that
The opposites of these numbers axe 10 andf 7. We see that this "
' property holds in this situation since 7 < 10U, There is one other case we-
should consider.
positive and the other negative? Any negative number is less than any posi- ,
tive ndmber, so - -é <2 . The opposites of-these numbers are % and -2. ‘me
order relation between positive and negative \numbers still applies, hence,

Does this same property apply when one of tHe numbers is

*

we conclude that -2 x = L

5 Ageain we note that this property for the ordering
of opposites holds. ' The general statement of.this property is: -
. ~
For réal numbers a and b, if a < b, . 8 -
then -b < -a . ' R
_ A ‘. b ' v .
. . . ted e voa -
. : ) . iee 2 S ceerereaeenn, foon
. Bxercise 3 j - ,
1. Simplify each of the following expressions.’ - ' '
(a) , - 1&+2)‘ - " (g) 2*’5)"'15 <
" (b)) -(-2.3) Lo ) -(7 %10 - 3. .
(c¢) -(k2 +0) ) . (1) -(3xY4) + (=3) ‘ )
' . . . 7 -
(@) -(3.6) - (2.4) .= 1) -[<(-5)] +5 - ..o
T _(e) waxo) - - (k) -(-7) +{-(-D .
() -[-(-4)) ] (1) =(-3) + [-(-3) -[ ( 3)]
2. What kind of number is «x if x is positive? If x is negative& It
x is zero? S~ . o .
. X o~
3. What kind of number is x1if ‘x 18 a positive numbér? If -x i8 a - -
negative number? If -x 1s zeRp? ) . ‘
4, a) Is every real mmber the nexdtive of some real nunlber? ) _
(b) Is the set of all negatiues of real numbers the same as the: ™y,
. .
. “ set of all real numbers? ! . < -
- (c) Is every opposite of a number a negative number?
Y‘v v T.' ‘l“;?’ ) - N
' W o By
. ' N . ’
) e i B N :/ “ ¢ ) ot
. s g . ol lll‘; \ - ¢ z
: e ) .
. Y ~ - ¥ \ .
® . R > Lo . - .
(«. v . / \' e .« s




e, . . . P
. P

.,( o h A ’ *
P 5.. For each of the followlng pairs, determine which is the grester numbgr. e - ;
. - . ,: ¢ 2
(a). 2.9, 2. 9? . (f) 0-1\2{92& N
i 5 °. ° Wt Y . -
L Ty s12,2 S . (g) 0,= T ;
. MY * . . - . L
L ke) 2398, -T62 : .. (n) -0.1, -0.01 ol w T
- : . g s
| (‘d) ‘-l, 1 0w L . (1) o.1, 08\’81 } o T et
'. > (‘e) ’37@, --12 ' . e o s"" 4 i
. . L. : - T )
6. . Write. true sentences for the following numbers .and their opposites, N K T
using the rélations U - i
N Exaxnplei For the numbers 2 and 7, 2 <7, and -2,5"% . ) v
2 1 e _ ) -0 : P
A (8) 7° - E B ¢ ", o s
‘ - ~ (b) /é’ -ﬂ . ‘ ! . v’? “‘ - ’ R
(e) "\ T SR I
-(a) 3(;;\ 2), %gao *8) L _
T 8 + 6y ~ ‘ -
( ) "( T )J -2 : . . - . !
; (8 41 +mol, -((5+0)31 T e e f@
7.  Let us write "%m " for the phrase ™is further from O then" on.the real | NN
- *  number line. Does "Ym " have the camparison property enjoyed 'byf n ; ’ @
that is, if a and b are different real numbers, is 1t true that a%a b ’__ .
. or bkm. 2 but-not both? Does " %= " have a transitive property? For . ?‘ '
! which subset of the set “of real.numbers do "Ym " and #3 have the seme’ _
meaning? L . Lo , . o \ |
s : v ¢ :
8. . Translate the ‘gollowing Ehg]_ish sentences into mathenatical expressions, i —
s describing the varia'llle used: o, ‘ . ' ! H
iu . » . 5,
: (a) The 1oad on -the' beam is greater than 100 gremsp What is the load? . ‘
j ‘(b) The deflection of the beam was no more than 18 mm up. What was the {
, : deﬂ%g:tion? ’ v )
i
Lo (¢) Paul hung 30 grams from the beam, but Jim added m than §0 grams
to the load. What was the load? . ) . o

] .
".._ { J ]3" § . at

t

R e R R e DI
-

v . -
* + N . .
. s, s, -

9. Change the numerals "- - 5> end wa 9" to forms with the s&ne denominators., .

A 4
, H’ﬁ (Hint:, Fifst do this for f3.end ,?- ) ¥nst {s the order of - i2 eha- 1;2 ?
- )
:;:_“’ ‘ (Hint. Knowing the order of u% end E% » What’ is the order of their' . . 3
“.f,.“’:"‘““‘* - "7 opposites?) : )
. - . Now state a general rule for detemining the order of two, negati've e
5o L o
£+ _ .rational numbers. * \ N ) ¢ '
' .9 ¢ o - i . ‘\‘ ¢ * te gt
. 15 i
¢ ¢ D 3 44% .
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. 1.6 Absolute Value™

<. . ' ', ‘ Several times our discussion of'deflection of the bending bweam-has-r»e-

ferred to the same amount of deflection in either direction. Sometimes it is

convenient to consider only the amount with no regani to direction. In order. -

G

o - v to do this, we want to define a new and very useful operation on a single real

number: the operation of taking'its absolute value, . *

»

. The absolute value of a non-zerp real number is the

1 greater of that number and its opposite. The -absolute‘,

.
+

e~ | value of.0 is O, , b
v, B,y this definition we can pow state that thé absalute value .of 4 is b,
A because the greater of 4 and 1& is by " The absolute value of - ;4,3- — (Why”)

What is the absolute value of l7? Which is always the greater of a, non- zero

number and its opposite, the positive or the nega_tive;num'ber? L havet already
. establishied that all positive numbers are éreater than any negative number. '
S 4 This tl'1en forces the absoltfth-’value of any non-zero real number tp be a posi-

- ==~~~ - tive mumber. The symbolWe use to indicate theé absolute value of a number

»

n is In!:. ‘For example, o

. s DT 4] =%, |- 3] = I»"I— >
. Y If we look at these n,u,mbers on the real number lin® and cons1der their

) ‘, absolute values, we can conclude that the distdhce between a number and zero ’\
’ is the absolute value of the number’. . i

o ~ We note that for a non- negative number and zero, the absolute value is
< tke nufnber itself. That, is, ) . -

- 4 14
*

L e
For every real ntmber x~which is 0 or ositiv e, (x > 0},

. -~ . le:x‘ . . - . -

2’

v ?

) W_}lat can be said of a negative number and its absolute value? We have
: - already stated that the opposite o&: negative number is greater than the

. negative number. We also note thaf “this number can be referred to as the ~

N negative,of the pegative number. Our definition of absolute vas.ue_ tells us

N « ™that |-5| = -(-5) but this number is 5 This leads us to conclude tQat.
T i For every negafive real number’x, (x < 0), '

S . . Ixl = =x ,

'-‘ »
~ .
- ’ 16
1 ‘d‘\r‘) - e e — \_KT;
- o N . ¢ ) T
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*We can now restate the definition of absolute value as follo;rs 3 ) :
'\; _For every positive real mumber x, _/’
- |x| '=‘x . .
For O =‘x, *
+ s le =X . . t
’ L "For every negative real numbér 3% s .
’ - . |x| = -x . T
, S ST SRR
e T e a
. - : egcise L
1. - I"ind the absolute\values.oiihe following numbers:
. (a) -7 (£) " -(~( 3))' . ,
L =3 () 14 x0 -
: (¢) (6-1)- (R). (4 +3) -7 N ’
(d) -1+ +o0 . (1) - (5]
(e) -(10-8) . — . oo s
. 2. ‘For a negative number X, which 1s greater, x or 'xl ? '
3, ~Which of the following statements are true?
Qg) I-7I <3 ) (e) 3<17- !
(®) -2l < [|-3 (£) -2<- 3] -
T (e) vl < Iaf (g) [/18].>|-4] .~
; SERCORE-P N L1 . (n) |2 = .
T ) Simplify eadh of the following.
3 Cg ‘ . ’
- (a) 2] +.13] " (3) |-2| +1-3]
() 2| + [3] (k) -(-3] - 2) )
(e) -(|2f + [3]) «1)" -(|-2] + |-3]) - .
@) -(l-2| + I3]) : (m) 3-03-2] .
- (&), |-a] - (7 -5) . (n) (=] = 6) _
(£) 7- {38k~ - (o) -5l x|-2| = : .-
(&) [-5] x2 oo v (p) l-e] x5) -
) -(l-s] -2 (@ -(I-51 x.[-2])
() 13 - 2l . . , -
e R LT T g
] © ] \ - >~ - '
L T ’
- ) e 3
- Ve 17 e ' = -
Litlx -




A.7  Aldition of Real Numbers _‘ R . <

- 3

Let us now return to our experiment with the bending beem. We will
use the auipment as described in Section l 2 and illustrated in Figure 3
however, this time we will vary our loading technique and record the re-

sults #h'a slightly different manner: - . y

»

.

“‘a

We wii,I use, thé{,same reference which has dlready been developed in
this chapter:, All positive loads indicate that thémasses are hung from
the beam while negative 1Bads indicate that the masses acted on the beam
'in an upward direction with the aid of the pulley. You should record down-
ward deflection with positive numbers and upwax‘d deflection with negative

s

‘ numbers. ) . P

>, . n ‘“

. D & .
. We will _make five different trial runs under varying load conditions.
For Trial I, fi%st load the beam with a 30 grem load and regord the deflec-
'tion reading Replace the 30 gram load with a 20 gram load, and record
this new deflection. Now add “the 30 gram load. to the 20 .gram load and

again record. the resultant deflection. Now remove these masses from the &
beem and lgad it with a 50 gram mass: Figure 15 illustra‘tes a data table

&
smilar to the one you should make for recbrding the resu%ts of your e:g- ,
" D nment. o ' " gl e | -
b » . . ‘.‘- . L‘ v
* T ' . {?‘f\g ;‘ Pt ’ ‘(}: -;b “ig .
FP N SO .
Y — - \'}‘l‘ial 1. T .
. "o e , ) , '
- ‘ N .oy - ' , ' *
! . Loadx .Deflection - . ’
(grams) (millimeters) .
: J 3 h N
11 A Y
" - T P #
- ’ 20 i . s —_— .
. - - 3 . Iy .
bl 7 M ’
* 20 + 3b A \ ® ) .
4 . ¢ 4 - . ’ » " b
A 1 50 e > :
o~ ——— ' ~ [ : . K
/ oo o I oL (.
p N Figure 15 . . N s~

- - -

¢ Now repeat the experiment for Trials 11, 111, IV and v. Use ,the loading
order indicated in each of the following tables illustrated in Figure 16




9 5" N B A
1] . N . ) - 0
. , 7\" X B
e e e S R T .
T eyt 2% Tpial I e ¢ Trial.III - -
_ o 'Z%:\ ‘ . ‘ . p
[N " ‘
Ioad Deflecti ﬁ. -, Load Deflection .
(gremg) (millimeteé#), {grems) (millimeters) |
» i - +
‘#ﬁs}:‘ T:“ikwc -~ . - - - ’ - .
b?q.- "30 g‘;ﬂ: “ 200 .
ol 220 , ', Zo0d- . . ,
N ;@‘ b 5 = -
30) +(s20)| . ]200 + (-200) .
, ~ ™~ . ' ¢
v 50 - e oL
. k.
T —
e e n e Y v - o e e { T
’ ‘ o b R N
- ’ * L 'j: r\ ‘\"‘ ’f’."; . * . Ao
. ) - :‘ g: ,
v P Do C . L
Trial IV « _ Trial V —
e 3 N . .
g . J ‘o
Ioad - Deflection -} -. ‘o Ioad _ Deflection- .
R 2 {grams) (millimeters) | (grems) (millimeters) "
. ., g ~a k;' S g ' 'r ] P
. 200 - N ’ -200 o -
>~ ) '-.~ ’ 1 ] ! * - v - . . , Tyt
: 100 - 150 - - b
- y" . ' - * “ 4
{200 + (=100) . v o [150 +(-200) | .
' . - ~50 n s o 1.
. ! _ 0y -5 = - ~ . * '~". 3
-~ N ] . . . ,o: -
A . ‘ % ! . °
\ L » .
o Figure 16° . et
' - ' Tt s

et us now consider the results of Trial F. ,Le_t us call-this ‘table a
"I;hysicj model” of the "bending beem™ since this table'help"s describe the !
physical situdtion whit:h we observed when the beam was loaded and unloaded.
From this_"physical model" of the experiment we wish 8o describe a mathema-
‘Eical model" for the expe}'iment- our " 'mathematical model” Yould ,give us an
accurate description of the experiment if we could be absolutely sure that

tgﬂ’:’, o Yo
I P A
HE W s “

[
R
sz,

§; no errOrs in measurement were possible and all of the equipment behaved in
: an "ideal" menner. The, "mathematical model" which does satisfy thts ideal
' situation is. the operation of addition of the real mmx'bers. ke %f“( 8 ;
-~ '~,:°s .

.- If ve tqke the deflection for 30 grams and add to this ‘the deﬂection ' \
for 20 grams, we, get a result which is ":Ldeally" ‘close to the deflection for~

»
e
.
.

! .o 19 2;" —‘ =




3 ) : 1S

50 grams Suppose & 30-gram lo,ad caused a deflection of 3 mm, a 20-gram “load -

e deflection of 2 mm and & 50—g'ram load a deflection Qf 5 m. On the scale oh
we o'bserved that the pointer first. went from O to 3, and then from 3 1t moved_
two more units in the positive direction -The sum of 3 end 2 is 5. We could ’
elso. pieture this as addition on the mumber line as illustrated in Figure 17.
v ~ o ’ @ ! - 4 »
. < , .
. 3 — 2= ¢ ’
A i - . * Y
; .0 3. >
R . ' , .
.’ LN ! ; ° ' ) " -
Vo " Figare 17, R
* L ] . .

'Ihis example reminds us of something we already kiow: To add 8 msitive
_ mumber ,to a‘positive num'ber, we move to the right on thé mmber line What "5

’

happens on the number line when we 2dd a negatiye number to a negétive num'ber?

. In Trisl II, the loads were all directed up and the deflemons were in
. the seme direction. If thege defl_ections are the opposite of those in
_Trial T, we now observe that’(-3) + (-2) = -5 (Figure 18),~ *

-

« ke ~ N ?‘ *
. * 3 .
fe—-2 = 3
- .
& i P » \‘ .
€ " —t ¥ < 4 ¢ .
’ -5 -3, ' 0o -
R t . . R
» » L .
' -
EYN ! .t . . .
ST £Figure 18 S .

v . N ’
~—
N

end to-add a negative number to & negative n\nn'f)er, 'v;e move to the Teft on -

“the number line. * ¢ . .

S

.

Our next concern is what happens on the number line when we add & posi-
. tive nuinber and e negative num'bei'. Trials IiI, IV and V'give us experimental

illustrati ons of ‘this type of addition.

1 - - .
. JA£, our: experiment follgwed.the pattern a].ready i’ndicated ; Triel III o
would reveal equal positive and negative deflectionse Since positive ,].oads o]

o give doynward deflection and negative loads- upward deflection, we observe
thet adding a negative load to a, positively-loaded beam reverses the diree-
"tion in which the pointer had moved,. In this perticular case, the, emount
'qf deflection should have lgeen about the same for each individual loed. In

" other words, the -two deflectioné haed the same absolute value*and the 'final

¢ — . v B
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'to the left if a < 0. From point a we now move |bl units to the right if

ERI!

. .
Aruitoxt provided by Eic - ¢ ' .

. .= -

‘ position on the pointer would be the O mark on the Scgte. ™ - - L

ot
P -~ —

In Trial IV, the pos:.tive deflection was greater than the negative de-
i"lection. Hence, adding the negative number to the pos:.tive number gives a

positive résult ‘which is equal to the difference between the absolute values

. of the two deflections. For example, we could considér 20 + (- 10). On the

number line this could be illust.rated by going from O ,to 20 (a distance equal

to iEOI), then revers:.ng direction and gping a distance equal %o |10| This

is the same as the, operation of subtraction in arithmetic, and what has’ hap-
pened is that we have subtracted 10 from 29 to get a final result of 10. Lo

Trial V is similar to il‘rial IV but since the negative deflection was
greater than the positive deflection, the final deflection must be negative.
Figure 19 illustrates the addition problem -20 + 10 and 10 + (-20). In both
cases the final result is QlO. Again we notice that the result can be found ~
by, taking the difference between l-20] and, IlOI However,. in this case the

%

negative membey has a greater absolute value “than the positive,number> and our,

"bending beam" model mdicates that the end’résult should be negative.

A3 ! . e
+10—>, |
' : s ¢ : .
-20 -10 0
i e
) or - -
-20 - =
S - N e +10 —» <
° -10 , Y, 0 10
. &Q ! R .
Figure 19

We have now described the motion in all ceses' Let us see if we can

POS e

learn to say how far we move. We want to find tHe sum of a and b on the
number linen. Fixst we move |a| units from zerow to the right if a,> 0, &nd

¥

b>0 and to the left if b < 0. Check this procedure u§ing the data recorded
for Trials I through V (Figures 15 §d 16)

r +

When we add two mumbers, though,. ye are not in the. habit of using & num-

“ber lir{e to find the sum. , If we add two positive numbers, we merely fall back

on our knowledge of thé addition facts of arithmetic, i.e., L + 6 = 10.

[N

v

Q ‘ - : . ."’ ’ 9
IC <3 T
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However, what is the sum: of two negative num‘bers? For exa.mple, vhat is ‘
Bk A

% P ’ ¢ ‘m
%&wy:*;mf‘ ‘, . ' ( ’4) + {-6) ? L S
“We have found; on the number line, that !
.-mﬁ’“f.\'g‘; ‘ N N Y ' ..l

SEFTIN L () + (-6) = (-10)

. ) -
:Ve“ wish to think a bit more carefully about Just how ‘we rewched (-10). We
begin by moving from O to (-4) which is to the left of & '"Distance between

.,;_ : a mnnber and 0" was one of the meanings of the sbsolute value of a mumber.
e Thus ¥ e-ddstan "between 0" and TC-BY 187 h|L Of codrse we "reslize that Tt
A *

f]\h ‘ is easier to write L than | ~k|, but tHe expression |-4] reminds us that wez.'
The s o

a}; ot '_ were thinking of "dista.nce’ f£rom O" , and this s wo:cth remem‘Bering at present.
e . We next add (- 6) by moving a distance of |-6] to the left. .This results in a
. ’ 'V‘, " néw position which is at a distance of lO units in a hegative direction from

e boED . Hefiee, (-4) + (-6) = -(|-4| + |-6[) = -10 . ' x

,{R” , You can reasonably ask at this point what we’have pccomplished by all

thi.s ' We ha've taken a simple expressiqn like (-L) + ( -6), and made it look
, ompl:.cated’ Yes, but the expression -(I hl + l 6|), complicated as it -
" lééks, has one great advantage., It contains only operations which we know
how to do from previous experience! Both |-4| and |-6] are positive mumbers
' and we know how to add po“sa.\tfive numbers. The sum «( |-4]:+ |<6]) is the nega-

';»v

& fﬁgf of the sum of two positive num'bers, and we know how to find that. Thus,
R ,; ye have have succeeded in expressing the sum of two negative num'bers. . Prior to
i v - . +
7 o “this we. had just a picture on the mmber line for this, sum., ‘ ) oy
ool xS

,

\
, . Think through (-2) + (- 3) for yourself, and see that by the same reason-
»\»N“"‘h,w et 'ing‘\yowamrive.fat Wi ?‘

°*
4

&

/ (-2) + (-3) = ~(|-2} + ]-3]) = (2 + 3) =5 . :

: 3 -~ :
From these examples we see that the following defines.the sum of two

)

) positive numbers in tenns of eperations which we already knofr how to do.
L.A Lo - LN — I3 R SN - 44‘4-e41'-4. P 3

¥ e
1] -

The sum of two negatjve numbers is negative; the

. absolute value of'this sum is, the sum of the absolute

values of the numbers.

.. - . N N
A - . o . " S

In general, this statement ‘becomes: ~.

/ It a~and b _are both negative num'bers » then?i. . -@f ~e
; . ’ . a+‘b" _“ l lb’) . N R

»: ¢ ' . ~ -
B > = 22 & 9
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So far, we have cgnsid\ered the sum of two non-negative numbers, and the’
sum of two negative numbers. Next we consider the sum of %¥#o numbers, one of

which is ositiv es ‘and the other negative.

, If we refer back to Trials III, IV and V, we note tha.i: the direction of
_ the deflections was reversed. This _suggests the operation of finding the
. .7 difference between two numbers of arithmeticr: We can verify that
V] (-7) +10 =10 + (-7) = 3. We get the same result if we ts;.ke the difference
between the absolute values of these numbers and compare the order of their
hso values. In this case, |10| >'|-7| and, therefore, the final result

smst be & positive mumber. So, . .

¥ P ! »

-(7) +10 = |10] - |-7| =20 -7=3

-

On the other hand, had we chosen to find the sum, 3 + (-8), this is the'same
as (-8) + 3 or -5 . Again we have taken the difference between the absolute
values of these mumbers and compared the order of their ebsolute vhlﬁeé. Thi’s
final result gust be a negative mmber since |-8] > |§|

_ , 3+(&—-H8I-BD -(8-3)=-5. .
From this it appears that the sum of two numbers, one positive (Kdthb other

v

-

negative is obtained as follows: ..

£
The absolute value of the sum is the difference

between the absolute values of the numbers.

() The sum is O 1f the positive and
negative numbers have the same

g @bsclute value. 2~

»

Ifa >0 and b <0 and |a| = |b|, then
_ a+b—(|a|-|bl)-
(v) The sum is positive if the positive

>

“fumber” has the “greater- absoXute ~value: - -
That is; 1f & >0 and b < 0.and |a| > |v],
then, o .
‘ 'a+b=|d-lﬂ

(c) The sum is negative if the negative nuitber

has the greater absolute, value.

3t 2 >0 end b <0 and la] < |b], then
a+b=-(p] -le]) .

.
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Exercige 2 . .

Perfom the indicated additions on real numbers 3 using'the mmber line

'

to aid you. ‘ ‘ ‘ : .
@ ey @ (@)« () |
L wm e @ sh+ad - ~
. (c) (-9) +.(5) - , (m) (-2) + (-1)
T @ eeew @ (46 (18
'3'n4 (e (-8).4(8). - - . (%) u#)+m%

; 1 2. Teil in your ovn words what you do tol the two given mumbers to find .

{‘ { ‘ their sum. - .“ ¢ . , o ‘ ) (
.i "‘(“é) 7;10 y 1 ' (o) 0+ (-7) - R
LT T4 0y ) (g) 7:+.|-10] . -

(@ 0+-n w7+ ¢10) B
! (@) (-10) + (- 7, / . (1) |7+ (20| ° :
i () %0, 7 () (<l-0f)+ J7l

3. In each of the following, ‘find the sum, first according to the defini-

v N tion, and then by any other method you £ind convenient. o
(a) (-5) 3 o (e) 18+ (-1b) ’
S (-1,3.) (5 7 ’ '\ (£) 12+74 . Co
oo @ R
T 2+ () T w @ e

. 4, In the coﬁ'rs‘é’ of & week the vaxi_tions in meart" tenperature from the
‘seaaonal normal, of T1 were -7, 2,'-3, 0, 9, 12, -6. _What were the
mean tenperatures; each da?? What, is the sum of their variations?

Coede - “._..!-‘.a.‘)-»w
-

"y S : . s
{

1.8 'The f{eal Nunber Plane . :\ o \

We have talked about g coordihate system on a mumber line, such that
' evety real mumber is associated with exactly one p_oint of_ the 1line. Now 1§t
us draw two number lines which are p‘e\rpendicular to each other. It is not

TR (Y

o4

NI
P A

necessary that these two number lines be perpendicular to each other, but .
this is the type of coordinate system in a plane which we,,are most likely

e

'

3ot e




1 . O 4 N
0

to see and use. Since the number lines are perpendicular to each other, we

9
Z w:lll call this a rectangular coordinate systém. ,
e ~
? ) We will ta.ke the intersection of these two lines as the origin of the
' coordinate systans of both lines. Each number line is called an a.xis. We
- "“call the axis which extends across the paper the horizontal axis and the
*"  other axis the vertical axis. The plane determined by thifse two axes “is
_called the coordinate plane. Let us agree to place the unit point on the -
horizontal a.xis to the right of the origin and the unit point on the vertical
axis above the origin. Coordix\ates may now be assigned to all points on
each axis (Figure 20). ‘\ A
A ’ 34 -
- 24
. - !
| t N - 14 - P
. . . »
:': 4 + : - N T 1 T < = > '
o3 o2 % 1 o2 o3 oy v ‘
Pl . . . -l R ' 1 .:
o 21t '
. - !

T
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Let us also suppose thet a horizontal line through Q cuts the vertical axis
’ in the pointfwhose vertical coordinate is 2 (Figure‘elb). We can usge this ' *
1: . information to define a coordinate syetem in the coordinate'plane. We' say | N
that point.Q has a horizontal coordinate of 3 and a vertical coordinate of
2. Any point on the cdordinate plane can be located if we know its coordin-
ates. Each point has a bair of numbers associated with it. The order in ‘

, which wf write these numbers is inportant. We write these placing the mumber
found along the horizontel line first, and the one found along the vertical.
"line second and enclosing them in parentheses. We have assigned to Q a first .

s ‘ number ; 3, and a secopd number, 2, and we think of these as an ordered 2211

& of mmbers, (3,2), belonging to Q and called the coordinates of Q.

- oA PN

In describing the location of a point in the coordinate piane,iit 15 con-
venient to specify the portion of the plane in which At lies. The horizontal
axis and the vertical axis divide the plane 1nto four regions. Each of these
regions is called a quadrant. ,The first quadran t is the set of all points whose

KR horizontal and vertical coordinates are both positive. The second quedrant is

the set of all points whose horizontal coordinate is negative and whose ver-
tical coordinate is positive. The third gquadrant is the set of all points,

whose horizontel coordinate and verticel coordinate are both negative. The

fourth quadrant is the set of ell points whose horizontal coordinate is posi-

tive and whose vertical coordinate is negative. We denote these quadrants by

N I, II, III, v (Figure 22). ,
N ’ , h -+~
! « .
i 3 P
; ' II I . )
ottt - (-7+) 2+ . (+,+) ,
‘ ’
1T »

: T B I . s e e -1~ B ! B R N -
s -7 & 1 i N ¢ 1 1 1 o - 4 4
o 4 3 2 a1 O 1 2 3 s

. -1t .
.. (-5-) (+,-)
_2 - e
ke I1I . IV
. 34 |
A -~
e - ‘g

; r ‘ . L ? L
’ . Figure 20 ““"-‘ildld»k“\-‘olu‘ywwotth,“vgs
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a

If 'bqth of the cpordinates are zero , the point is the origin. ... If the horizon-\
tal coordinate is zero and the vertical coordinate is positive, we say that
lthe point is on the positive vertical axis stbut if the vertical coordinate is
- hegative, the point is on the negative vertical axis. In a similar menner,
if the horlizontal coordina’tge is positive and the verticel coordinate;is zero,
the point is on the positive horizontal axis; with horizontal coordinate nega-

aavy A

tive, vertical coordinate zero tells us that the point is on the negative

1

i horizontal exis. - . 9 .
. Examples Plot on a coordinate plane the following set of points:
K - . ’ ¢ '
' . U2,1), (3,-1), (-5,0), (-4,3)}. State the quadrant in
. . which each point falls. " . :
L |‘ ve . e
= : .Y '
- P A \
" . . ' 1~
. L) i *
o (‘1*13) . !
. J i *
W f (2:1) <
ES &
) IR
- 5 > x
5 3 -3-2-.1°12 345 L .
\ ~ (3, "l)
[~I . ¥ -
! —3
s {, B N
’ 1

Figure 23

Exercise 6

. D Ky 4 B . »9 FRe

y 1. Plot the low:.ng ordered pairs of numbers; write ‘the mumber of the >
quadrént r the position on an axis Jn which-you find the point repre-
o Lented by each of these ordered pairs. . .

(=) (3,5) (g) (-3,-1) L) (2,-)
P - @) (51 (&) (7,-1) : (n) {(5,2)
(e) (1,-%) < (1) (8,6) (o) (-3,0) '
S (@) (by) - (5 G,-2) ~ (p) (-4,-5)
‘ (e) (0,0) , ©(®) (-3,-5) () (-1,2)-

(£) (0;5) - ) (1,3) (r) (3,-1)

’ . S

R’&\ B g‘g;v{lh;,‘ -

prt
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2. (a) Plot on a coordinate plane the following set of points:

s

((0:6): ‘(’1:0): (-2,0), (2:0): (‘3;Q), (3,0)}:

(b) Do-all the points in this set seem to lie on the same 1ine?

(c) What do you notice about the vertical coordinate for éach *
of the points? AR

3.+ (a) Plot the points in the foliowing set. , ‘_' ¢ N
((0 0)) (0)'1)) (0 1)) (0)’2)) (0)2)) (0 "3) (0 3)T

(b) Do'all the points nemed in this set seem to be on the seme

line? . ¢

(e) What do you notice about the horizontal coordinate for each

of the points? . @ e

4. . (a) Plot the points in the following set.

.

2

- UOBR(LE), (28, (3,2), (1,00} 1,

. o é
{b) Do all thé points nemed in this set seem to lie on the seme
line?
4 1
- M i N * *
1.9 + Summary ' i . ‘

In this chapter we used a "Loaded Beam" to develop the negative numbers .
The experimental results gave us an intuitive understanding of &bsolute value
and the addition of real numbers. . The mnnbex‘ line was extended to include *the
negative mxmbers and used as an aid in addition,. The nmpber line was algo
used to extend the property of ordering for all real numbers.

¢
v

Finally, we moved from a coordinate system on a number line to the real
nmnber plane- _A coordinate system_ for. the plane.was deyeloped and we learned
to associate ordered pairs of numbers with points on the plane. .

[4 . “ 2
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;T T T T MERI?ENTAL APPROACH‘TO LINEA.R FUNCTIONS . [
T A "
(°"l'i2fr.3e§1' Number Gederator o . : ’ )

?

The p"r\et\;iods experiment with the loaded beam made it possi‘_ole to -

"geneqnéte" the real numbers. Now we want, to construct.a "simple" real num-

e ' A\

ber geyerator w‘m‘.c’ ve can Joe to demnstrate more properties of the real

..»*
. number system. This device will make it pos51ble to "turn" a real nu‘mber.
> PO Y i !

- inch threaded rod with a fittlng hex nut . f_‘>

q
and washer. Glue the washer to the hex nut and thread the combination on

|
L

Take a one-foot piece of

ol

'che rod. Support the rod with two transparent tape holders and modeling ‘

. clay, as shown in Bigure 1.

. \.w-- P P . +

. Figure 1 4 i
~ ~ r

The "indicator" is the washer glued to the \hex nut. Place masking tape
i . )
on the faces of the hex nut. Move the indicator by rotating j.t until it is

- s

~

in the approximate center of the ruler and one face of the' hex nut is in a -

level position. Mark this face of the nut with the rmumeral zero. mk'e a

~

. mark on the ruler opposite the .edge of the washer and label it wi’ch the num-~ *
RN

[ eral zero also. The mark on the ruler should be located even with .the plain , o
face of the nui-washer combination (Figure 2a).” We have arbitrarily chosen ‘o
g *  both the point and the face flor zeros. - P ‘
' '
> RULER '
’ .

. \
.. INDICATOR ¢
¢ M /a} . ©
: N Figure 2 ’

3 v : 3

. e 29 . ,
Q ’ .

L « : 9, = »
. -ERIC : S AV v e
%
:

- PAruiitex: provided by ERIC ‘e . ’ .
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ke ‘ 1
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Now rotate the indicator hal.f‘way (to the third face following the one marked
zero) and mark th&s face (Figure 2‘b) Now as you rotate the indicator you -7

can see that each face represents of a turn. Each full rota#ion of the
3

indicator could be chosen as our arbitrary unit ¢f displacement. However,
’ this unit would be very small so let us choose ten turns to equal. one unit.
“"This wi]_;l give us a decimgl system similar to our monetary system and the

metric system.  Since there are six faces in each turn and ten turns to the

unit, there are sixty faces to one ‘antt. . ’

.

6 fac%s) X ('lg.) 't,é:;‘:s)

l turn

(6 faces X 1 'turns) _
1l turn X. anit -

6 faces 10 turns, _
(lunit)X(lturn)'

6 faces :y _ 60 Paces
(l unit ) % (20). = 1 unit
— Fad

* 'This should remind us of the way in which we count time by sixties (i.e.,
sixty seconds is one minute or sixty minutes is one hour). :

» Begin at zero and move the indicator to the right. Each time you c:om-
Plete ten turns and the face of the hex nut marked zero is on top, mark the
ruler &s before. After you reach the support at the end return to zero' and
move the indicator in the same manner to the left. After you have marked off
units to the left of zero, return the indicator to zero. Now label the marl’c/s
to the right of zerd with positive integers (1, 2, 3, ...) and the marks to
the left of zero with the negative ‘“integers (-1, -2, -3, ../). We now have
the scaleférked with the integers as in Figure 3 {eee =37 -2, -1, 0, 1, 2,
35 ) - ' )
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2 Mathematic Through S01enee Part III. Student Text (revised) o

(The follow1ng materlal s omttted from the text., It fol\ews page 30.)

The marked riler is the ppysical mo@el of' our number llne. The

indicator on the threaded r6d makes it pos fble to “turn" or generate
numbers. Since ten turns of the indicator generates onr unit: one \unit
to the right 1s 1 and oné unit to the left is -] Then one tﬁrn‘df'the

indicator to the rlght generates 0.1 or —%6 " which is a E_Sltlve ratlonal

number. One~ha1f turn~en “the’ lndlcator t.0 the left from Zero generates N

-0 05 or 20~>/’4thh Q}?a Q‘gatlve ‘rational number. A sixth of a turn_
(one face .on- the unit). to. the rlght of zero wllb generate -g— or

’

0.01666.v.. ..  « . e

¥ Turn'the indicator 12 % turns to the rlghtfaﬁd flnd what rationdls

number is generated. We discover that it is between 1 (ten .turns) and
P

2 (twenty turns)‘ Since two turns is 0.2 and 2 §—£§£9§ is 4 faces,
3 1 turn .

our rational numbey coﬁ&g be represented by 1+ 1/5 + 1/60) or .
1+ 0.2 + 4(0.01666,..). This same number can be represented as

(Check the arithmetic yourself.)
& £ - 4
Exercise 1

1. How many turns of the indicator are necessary to generate the,féllowing

snumbers? ' .

a) 3 - c) 1.k . e) +5.45
l o

. b) -4 ' A a) -2.8° o £) _Ii_g_

—- - JoRp- -

- R

2. How many face cﬁanges of the hek nut from the zero point will generate

the folioﬁing numbers ?

| - w3
2 , ' AT

L
10

-2
- -
6

2

v %
What numbers would be generated bygthe follo
inﬂlcator° ' ‘ v
a) Right 35 ¢ © ¢) Right 95 ‘
. . ‘},. « .
« .b) lLeft .15 """’WW‘“ ©\. 4)- Le;tt lf‘f

Ia tl A
; . '7‘38'@. @N@

%gg
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» What numbers woul.d e generated by the following number of face changes

" 4 : Vo '

from the zero position? -

>

M . . e
. - . ;

. LR LR

© . (a) .Right 90 (d). Right 156 . . . . ’
. (b)), Teft k5 () Left s12. o, -
L () Left 256’ - (£) Right 316 SR o
.:z' C. ?* L ) * N . ‘ ) !w
. . - -
; ‘?«"»‘* - T D R SR S W NS
. We can continue to..paiorm -t;he experiment. There is a correspondence . -

'between thé nuabers on the scale and .either the nuuber of turns of the indi-

' cator or the number of face .changes. Let us consider a set of ordered pairs

such that any first element of an ordered pair is the displacement from the i 1(

zero po/int , and any séecond element in ’n ordered pair ig the number of “turns .
indicator which generated the displacement. Iet S represent an ele- -t

of the first set, and T an element of the second set. The ordered pairs g‘f"

,T) represent our “correspondence. The zero point on the scale correspon,ds N -

;? to the zero mark on the indicator and {0, O) reprepents this correspondence.

‘ We already have many other orﬂered pairs from the previous discussion, such

as: (1,10), (-1,10),. (20,,2) ‘and (g, 38 2y ) Find six other ordered pairs

and p’lot them all on coordinate graph paper. wLabel the horizontal axis, s, .

and the vertical axis,.T. ' - ‘ - ’ L . ’;f

\
’

. . You will notice that the.set of points plotted on the graph paper are
“arranged in such a vay, that they suggest straight lines. In fact, they ap- ‘ :
pear to be a pair bf straight lines meeting at the origin. Dréw the, lihes e
that best fit your data. Now we have another physical model of our corres- '

> ’

;pondence. . - s ' ' L
7T ‘ ’ { d ’
.71 Once, we have decided to depart from the experimental "facts" and draw

AR
S straight*lines t0 represent our data , We have a graph*similar to ‘Figure h - d
N =3 \T :
A
1 A . b .
- S . N ‘;
1 Py - - :
d < - ; . .
N P Y
. ! o .
Figure & \ .
.- ¢ ° , ,
n:’ ‘ “
oo 31 ' y ) .
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Such a graph exhibits a "relation" betvieen the num'bers S and the number
e o\f turng T. 1In all relations there are three essential features: a domain, '

a ‘range and some “rule which wil], tell us when an element of the, domain and
an element of the range satisfy the relation This "rile" does not have to ’

.+ Dbea simple algebraic expression. It sometimes can be only a list of ar'bitrary

7

) pairings with no underlying pattern. In fact Ve define .a relation to be a

set of ordered pai:;s. The set of all the ,f'irst elements in the ordered pairs .
of the relation is called the domam—of Tela‘b:ton and the set of all the

L

N

second elements is called the ra '5“, . :

s
1

In ah experimental setting, the domain is usually limited by the physical
. arrangement S the experiment » e.g., in the previous chapter thedamount of ' *

s - “load‘} we could hang on the beam and in this experiment by the length of the
threaded rod. Once the domain had been fixed, we then determine the range
experimentally. Wifh the aid of.a, 'g;pp'h we can search for a connecting link
betwegn the domain and the range. “(¥ we can £ind such a connection, we may B
e i

- given glemgyts in the domain.  ° T .

le to use it to ' generate elements of the range which correspond to

- In the graph of the relation which we found in the number generator ex-
periment (Figure 4) we can see an important feature. Each element of the
N domain has associated with it exactly one element of the range. Td be spec- =

ific, for every num'ber on the scale there is only "one numbes representing

the number of turns of the indéfcator. This type of relation is of special y
. importance‘ in mathematics. It is called a functioh. A relation is a function
if for each first element in.the ordered pairs there exists exactly one second

-~

element. . ) ‘ 0

our investigation has shown us that what we really have is a functional
relation whose domain is all numbers from the_ scale used in the experiment
and whose range is the number of turns from zero. When ve draw a continuous
line on our graph, we are expressing the idea of continuity of the relation.

Now the question is whether or not the greph is actuelly a representation.
the functional relation. We can answer the question in the affigative if
we can satisfy ourselves on Just one more point. Does the graph show that

_each element in the domain has‘exactly one element in the range related to it?
T

w To, answer this question, we must lear:r how" to find the related elements
4]

of the range if we are given'elements of the domain. We shall illustrate thig
procedure with an example. Figure 5 shows a st@ight line graph

et \
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Figure 5

~

. As you know, any point on this 1:i.ne can be represented by an ordered
o{g; e pair (x,y) vhich e:gpfesses t‘ﬁe horizéntal and”yertical coordinates, respec-
Dy el W

tively, oi‘ tha.t point. .’ We take some poiﬁxc on the x-axis and from this point
ve. draw (or imagine) a vert:lcal-l:lne. We now examine this line to d'etermine

\ <, how many :i.ntersect:i.ons it has with the graph. At each point of interseet:lon“

5o “with the graph we have &n ordered pair of the relation. If the line inter-

sects the ’graﬁh ‘exactly one point, we know that that particular element )
\ in the domain jas exactly one element j.n the range related to it. If every -

‘ possible vert cal line drawn from the elements in the domain intersects the

graph :i.n exactly one po:i.nt , the}’e';ery element in the demain has exactly one

Suppose we &e given ithe point whose x-coordinate is'3 and we wish to7
find the related y-coordinate. Draw the vertical line whose x-coordinate

o

: i@ 3 and consider the po:lnt at which 'Eh:ls line :i.ntersects the graph. firom f{
+ this po:i.nt of :i.ntersect:lon we draw a horizontal I:i.ne s extending it, :i.'h 'tu.rn,
unt:i.l ;lt meets the y-axis. 'me value of y at th:i.s 1ast po:i.nt :i.s the vdlue
w"related to X =3 The sequenqe of .stéps is shown in Figv.re 5 by dashed lines
and arz;owheads. We note from F:i.gure 5-that for x = 3 we get y =k, x‘l‘hus,
the ordered pa:i.r (represented by the point Q in the f:i.gure) 18 (3,4) and we
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., have found the unique element of the range which is related to a given element
of the domain. . - ' '

<
N .
-
. -

Now let us apply this procedure in getting an answer to the questions we
po/sed.

Is the graph of Figure U4 the graph of a function? The elements of
. the domain of our scale-turns relation are plotted on the S axis (herizontal).
A '_ sand the elements of the range on the T axis (vertical). Start with any point

on the horizorrtal axis and from it draw & vertical line to the graph. _From
the point of intersection drav a horizontal line to the vert jcal axis. Clearly, ,

any vertical line you could draw intersects the graph at only one point and,
therefore, any value in the domain has related to it a single value in the, |
(See Figure 6.)

range. Thus , the graph represents the functional relation.
-~
\\ 7 e .
. . . . !
o l
. |
Poe e e o L
. | b e o
Iy .
. |
- “‘ﬂ %
s T | ) S L -
- I . y
b \ I
. ) i - ]
° (‘t ) ¢
- . . Figure 6 . : >
2.3 The Face-Scale Relation ) ‘ . C s

v

Let us collect another .set of ordered pairs from the number .generatar.
For this set of ordered pairs, we will let the first, element be the number of
- h_"—-face changes from the zero position and, the second’ element be the correspond-

ing number on the scale.
e,

Let us represent such an ordered -pdir by (r,8) where

F is the number of face changes, and S is the number on the scale.

The ordered

, pair (0,0) and the pair (60,1) are both ig this set of ordered pairs. Find
eight members of this new set.

) .
el o
'

Graph’ this set of ordered pairs.

Label 1}}18 )

-

like Figure 7
. : ' ;/ S = h
EMC ; o

\ ~

G‘: oo ,r '

, horizontal exis F and the vertical axis s.

R

Your graph will 1ook something ,‘

. &

[




: Figure 7 3
- , . Y :

Just as before, we can connect these points by straight lines. Every -
; :re;l number S tan be obtained by some (possibly fractional) number of face

—mglla)an_ges. Thus, the graph of this relation will be simiia® to the graph shown
- in. Figure 8. Is this the graph of a. function?. Let us appl;x‘ ‘the test dis-
~gu_sged in thg_:last section and see. Start with any point in the domain and
‘draw.a vertical line to ‘the graph. : o

‘ » .

. f .

Fgure 8 7

Y

. Yéu £ind two points of intersection and now you fmst draw tyo horizontal lines ~
- ‘to the vertical axis. This means that this value in the do@ has two valueB.
o in the range related with it. Thus , the graph of this rélation does not

]

[ . .
o A * ©e . . . . 3 -

N
43
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repr‘esent a function.

To summarizg, the experiment ahows that the numbers on the scale ‘and nu.
ber of turns of the threaded rod form a functional relation. Moreover, the
domain includes all numbers between the largest ‘and smallest marked on the i
ruler. The range includes zero and all positiv'é numbers, There are no break;
in the'graph ; hence, we say the function is continuous. The numbe# of face
changes from a'fixed position and numbers on.t}ie scale, form a relation which

.

is not a function. : ot ?

r 4

- ’

: ERI

=l

Exerc e 2

B
Which of the graphs of the relatioés shown below is the graph of & -
function?

>n\ot & func.

123'1&
(3)

»
Examples:

7.

PAruntext provided oy enic SN
5 L
. e . .
A '
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2. Gréph the ordered pairs given below, state ‘the
tell if the relation is"a function. ’

Eﬁample:"[(oyo), (1,2), (_2:,4"), (3,6).}

a "6+ .
. 5" . .
"4} . '
"3“.. " - e \,.y??‘,.«.....,_,,‘,wwvn,.,.._mm- i
24 e
1+ -
* 04 C )
01 2 3\11»
¢ (82 [(192), ("1,2)‘, ('2),4’)', (2},4’)]
i (b) [(];,3), (1,"3), (3,9), (3;,‘9)}
. (c) [("1,."é), ("1,2), ("’"’,'6), ('1",6)}
U@ (G -3, & D, E-D
L) (@ 5) 3 5, (310), (3 0]
U

(£)

———

(n)

P

domain angd rangé, and

Domain [(;, 1, 2, 3)

Range (0, 2, 4, 6} ..

Relation is a fu:}ctioff
-(discrete)f

-

(4

.
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2.4 Seeséw Experiment and Multiplication of Numbers

In Sebtibn)1.7 you studied the addition of resl numbers and learned the

meaning of guch phrases as (-3) + (-2) and (2) + (-4). In the next.few sec-

. " tions we #Will be faced with the problem of multiplication.
’ at present is that we know how to muleiply two non-negative numbers.

b

Y |
All we can bay

We will use a simple "seesaw" to illustrate multiplication and to pro-
vide us with an intuitive feeling for such products as

(-2)(3);  (2)(-3);

. ok .

Our experimental setup is shown in Figure 9.

’ s , . Figure 9 ,
’ ' 4

The apparatus consists of a balance support, a knife. edge clamp, and a
: meter st k.

in a s@lenée classroom in studying equilibrium and lever action.

The knife,
edge clefip acts as a point of rotation (fulcrum) The knife edge should be\s
adjusted on the meter stick so that' the stick balances in a horizontal posi-

wood as a support for the meter stick. - g

o

If a force is applied to either arm, the meter stick will begin to tip.
Force can be applied by hangling a weight from the meterf%tick\or using a
Ehe sketch below
+ shows a set of forces acting on a balanced meter stick (Figure 102.

i N

pulley arrangement to change the direction of the force.

~ Iy

L]

4£Zj

Aruitoxt provided by Eic:

(-2)(=3) . - ’

You may be familiar with this type of equipment as it is used .,

tion. \\The same arrangem;nt can be constructed by using a triangular block of

P('\‘

-




Bz

A e >

Lyt ey

gy AL TR SAA

O R Y

R IL RSN
| )

e

(7 A8 T [ s w12

Py

pa

iy

/ . "?‘h-“a—— éh ——&‘-aa F, . ‘

. , ] . Figure 10

A force like F_ or F tends to rotate the lever 'about the fulcrum in a

2 3
clockwise direction. Fl and Fh’ however, tend to rotate it in the counter- °
3
clockwise direction, M

The sense of rotation connected with a-force and lever can bemsed to
develop,the iltiplication of _real numbers. Together, the lever ‘and force -
form a "force multiplier".. A given force can accomplish a great deal if it
1s applied through a long arm. A piPe wrench is a femilier example. One

provides a lever arm through which tlhe force can act; it multiplies the
effect of the force, Following this reasoning wé define the moment of a

does not expect to be able to tight??a nut with his finge:Ss The wrench .

force as a product: . .

. a (arm) X F (force) = L (n@nt of force)

s XN
where a is the distance between the point of application of the force and*

the fulcrum. o Ca . ) _ <~
If'we suspend a one-pound weighi; at’ a distance 'of two feet from the
fulcrum, the turning moment is 2 ft-lb. The units’ connected with moment of
force are formed by taking the product of the force units and length units.
This procedu.re is not new. We are familiar with the process of "mltiplying"

two lengths to form length squared which is the unit of area., In our present

" system the unit of moment of force is the foot-pound_ (£t-1b). e

o v *

St
{ H > ' ) . \ .

’
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Clearvl;,;J the sen%f the moment does not i'élepend on the weight used.
Also, changing the length of the ) p -
am will not change the sense of ) . . lLft
the’moment".. To alter the sense ’ L D

of the moment, we must reverse "
the direction of the force (by - 3
puwlling up on the arm, or by in-

,

troducing a pulley) or apply the 2 pounds

’ ' force from the opposite side of R

: the fulcrum. To take account of . Figure 11 =~ - !
rn .t 4
. these considerations, we can make an analogy between forces and arms and the
vertical and horizontal axes of the coordinate plane (Figure 12). . ,?«'E_
+ . . ‘o
2
i
. . . ‘ F| . .
B ; ps
¢ * IR
- .
N 1
4 d LT b oL
v 43 a N a8 ”
3 (N 1 -
. g ISR A
A ‘... PR ..; . K 5 ]
‘. . S A .
- Z - - .
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¢ N f ay a, T -
. D) 7
. ! a F4 4 A ...F, . - ]
. o
L | . \ ‘¢: )
.- . ~ = — -
i * 4 - ; N
':{,;;‘o o ¢ 4 b J hd * **
N 1 - . A
a Tl
A « ]
. o . N ;' ., 1,
< . N ? . o, . -
- o < ; Figure 12 . e
. ’ - ', Ao~
~ 2’»-*,.

If we use the same sign convention used in plotting points,, upward forces

like F and F3 will "be positive, and those acting «in a downward direction like , ..

N 2

F2 and Fl# will be’ negative. Again, as inadrawing graphs, we consider dis- .
» tances to the right of the origin (fulcrum) to be positive, and distances to
T the left of ‘the origin to be negative. 'I:mis, fhe arms a8, and a, are positiveé,
hi
A ' le * a3q

-

and &, are negative. ' ° N P
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X -

. Thus, - : o )

L 4 »
’ . N & - . .
Y- . Y . )
. ‘ Figure 13 . . ,
v ‘ ' ¢
;v~;~~;—-Now-1et us try’ to see if these same results can be obtained by using some ' ’
of the facts we know about numbers. If a , b.and ¢ are any numbers ?f arith- o9 / )
metic, then ) N ‘
N Je -
oy, . \
’ | / /
: 41 ’ T ’ N

product of two nega'l:i.vé numbers is a positive number. You must remember, how-

~

' “ ~
- r -
In Figui‘s 12 a torce, Fl, acts upwards (positive) at a distance a, to :
_the fight of the fulerum (positive) Tis has a tendency to givefthe Iayer

a counterclockwise rotation. The product of a gositive force and a positi%re -

‘\‘_ai

‘ - o

arm shoulgi .gi\;e a'_ﬂg_q‘ sitive number which_ we call a ps‘sitive moment, N
(+) +, C+) = (C+) o . .

. 3 ’
h;fdg now consider F) we see that it is a negative.force, and its arm
a), is also negative. The effect produced by this combination is, however,

a counterclockwise rotation which we have just called a positive moment.

.
. a ‘ 2NN

(=) < (=)= (*) = o

This last statement,-if it can be applied to numbers, indiqates that the

ever, that this is not a proof for a statement about nu.mbers. We have only
shown that we can find an intuitiv /interpretation or the product of two
negatives.

b3
el

It is left to the student to satisfy himself tha considsratién of F2 .
- . 7 S

and ag gives

~~
]
S’
.
~~
+
S’
n
-
~~
]
S’
.

and of F3 and ag gives )

= (+)"(')

1]
—
]
~—
.

Our sign convention for the seesaw can be summarized by the following -

figure. , . ) . -3

- 23T




) e T T @) = k). S :
S @@ =) . T )
- ()(0) = (0) . '

(8)(® +¢c) =ab +ac

a Whatever meaning we give to the product of two real numbers must agree
with the products which we already have’for non—negative real numbers The

, above properties of multiplication whidch held for the numbers of arithmetic

°

. must still hold for all real nuibers. We can test the product of ‘a positive
’ number and & negative number with the following example: - T
S . %
. = (3)(0) .
= (3)(2 + {-2)) " by writing 0 = 2 + (-2). (Notice
. how this numbef introduces. a neg-
. 2 . ative number into the discussion.)
.7 0=(3)®) + (3)(-2), . 1f the atstribitive property is to
. ‘ hold for real numbers.
6 + (3)(-2) since (3)(2) = -

“We know from our study of addition that the number which y:.elds O when added

e to 6 is the number -6. Therefore, if the properties of numbers are expected
to hold, (3)( 2) must Ye equal to -6.

[

.

. Next, we take a é‘imilar course to investigate _the product of two nega-

tive numbers. . T
. . 0 = (-2)(0§ " if the multiplication ‘property of
- O is:to hold.for real numbers.
x =.Z-2)\g+ (-3)) "7 by writing 0 = 3+(-3). .
. 0 = (-2)(3) + (-2)(-3) if, the distributive ppoperty is to .
i » vt . hold for real nu.mbers ¢
N 0= (-6) + (-2)(-3) 3 if thgﬁ_connm tive. ‘property is o
. . c hold for real hum m, then ° V
. ' . o (-2)(3) =, “2)" Butythe resul‘b
o . . ) of the previoup problem was ' D«
< . 5 _— () (-2} = 4 /. @ .Q@‘
. —le> 9
- N
s Now we have come to a point where (-2)(-3) must be t?ie opposite o? -6. °Th

. number which must be added to -6 to yield zero is the nunbéx 6. Hence, 'ﬁ:
"we want the properties of multiplication to hold for real numbers, thenz 9‘
ek -

L

Cry -2)(-3) mst be 6. Could, the same argument be used with any pair of n et - je
SR ’a‘tive numbers? : - . e " e
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b S +Exercige 3 = -
4 Fill in the blanks: ) . S ! ,
“The product of "two positive nugbers is a - <« | number., - '
The product of two negative numbers is a " number. * i
The. product of a negative and & positive number is a ~ flumber .
"The product of a real number and 0 is r C
Calculate the following. o o
(a) (- —-)( ) S (8) (=3)(-W) + T T
s / . ‘
®) ((- —)(2)) (-5) ¢ (@) [-3[(-%) +7 .
() (- —2-)((2)@5))_ j ) 31152l + (-6
3 ..
@D (M ) Galel e (e ‘
(e) (-3) ((-¥) 1> ., ° (3) (- 3)(| 2| + ( 6)) E :
D 08 (L] (hi2)] -
° - _/" '
' 5 { ) O oin T T
,Find th€ values of rthe following for £ =2, y 5 3, a = -k: k-

(c) x2 +2(xa)=+ a® - )

() (x ra)? |
N

(e) 2+ (3|a +("*)|§]\) T

(f) Ix+2|+(5)|(3) 2|

£

of the o’cher .

R - , .\, . . w 3
(b)% 3(-x) + (( l*)}' +7(- a)) \> o )

—~— *— + —
o 1 2 3 L 5 6
i ’ i M

) Figure 14
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You may recall from your sfudy of the nuuber line that the distance from

' .one poin’c to another is the coordinate of the one point' minus the coordinate

-

¢ ek




R e e . e R ki Rl B

’

El{fc

JAruitoxt Provided

. . ' N+

from the secon& element' of the, other ordered pair. It follovs , then, that

4

For example, the distapce between the Ifoints vwhose coordinates are 2
and 7 is 7 - 2.0r 5 ( ure 14), If the points are not on the n ber lipe,
but are points EE‘E:E cot ;&i};{;‘“ﬁam, the Guestion of finding the aistance
between these points becomes M/c);1 more complicated. There ar some cases,

however, which are not too diffic t to de&.rmine. -7 -
{ ~ Y
A horizontal line in the coordinpte plgne is defined As a +line whose .

;oints are orderedpairs uith‘t*hg sameblseco d element. /The line illustratea‘
in Figure 15 is an example of a horizont ine. What /is the distance be-
:-- . tween the t#o points-gg:se coordin-
N - ates are (3,2) and (7,2)? Let us
) Y e ),efing .
- . line &8 the first element of one .

N ordered Lair subtracted from the

< o - ——e—> first element of the other ordered
(1,2) (3,2) (7,2) E :

’

e distance on a hqrizontal

* pair; /that is, 7\- 3. Therefore,
: - : K in this example, the distance be-
’ ' the two points is bk,

twe

are ordered pairs wié:th the same first el ent. The distance between any two

the distance between the points

whose cogrdinates are (3,1) and

(3,5) I8 5-1ork (Figure,l‘6).
' Q

If two points have coordinates
such that~the first elements of
each are differentgand the second
elements ake also different ’ then N
the line arawn through these points
is neithex.horizontal “nor vertical.

The ordered pairs (2,3) and (7,k)
determine such a fline. A4s we scan

(3,1) ) " We might ask, et,_thi,thime, if there,
is any way to codipa¥e’ the "stee;mes?)""

of the slope of such lines which are-

Figure, 16 .
neither horizont_al nor vertical

o . this line (Figurq 17) from left to .
N \\ - - - right, we notice hat it slopes up. L

‘ m ).
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If we draw a°horizontal line
throngh the points whose-coordin-

;_ ates are{(§,3) and a-vertleal line
through the other' point, we have
two new lines which intersect at
a new point. This point is.a point
of a vertical line which passes
through the point (7,4) (Figdre 18).
By definitiorPof a ve;ticaf lineﬁﬁ

o the horizontal coordinate of this
new point is 7. This point is also

a point of & horizontal line, which,’

by definition, must have a vertichl

coordinate of 3. Therefore, the
7,4)& . coordinates of this new point are

"Ii7’3) (7)3) ’ v .

The distance, on the vértical ¢
line, between the points (7 4) and
(7,3) 48 & - 3 = 1. This vertical
Figure 18 . ,  distance s often referred to as

'rise". . The distance, on the horizontal line, between the points (2,3) and
: (7,3) is, 7 - 2 = 5. This horizontal distance is referred to'as ‘run”, £ The
_ . ratio of the "rise" to the "run" is called the slope of, ghe line. . Thie slope

. of the ine in this example is % o . .
\ . »

) Fo a:straight line the'"steé%ness" is the same all &long the line. Jﬁé
slope will be the same betwéen any two points of the line which we might pick.
ggg letler m is usually used -for the slope. Thus, for a straight line we have

v

rise )
m = —— = a constant . ' , !
run ) - .

weiaote that in finding the rise we subtracted 3 fron 4, These num- |,
bers were the second elements of the original ordered pairSAWhich we uged tb
find theiéine. The run wes determined by subtracting 2 from 7. These num- |
bers wege the first elements of the original ordered pairs. From this it }“
appears ﬁhat it is not ac ually necessary to draw in’ the horizontal and veré

', .tical lines through the points in order to find the slope of the line..

We have defined ‘the- slope of a line by using, the coordinates of two
distinct,points on the line. The slope of a giyen line .does nat depend on

‘the particular pair of points used t§ determine the line, nor on the relative

A -
'




e ‘ ‘ ey,

- -

position of these two points. The examples ﬁeldw disopss th,e'\rarieus possi- _

~

bilities,,and show how the value of the slope not 0nly tells the "steepness"

_of the line oyt whether it rises or falls as we proceed from left to right.

. Each of the examples shows a general si‘tuation and a specific example. k2

[y

-~ L

Ebcample 1 P, (second point) is above and to the right of P, (first point ).

Figure 19 : .o

" l . Slope is po's‘itive , the line rises as we proce‘ed‘k‘from left to right.

* . ~
.

. Examplexg: P2 is below and to the left of Pl' ; -

- . - < . -

T A S -
" , ‘Figure 20° LT R

- ' v
Slope is positive, the line rises as we proceed frofi left to right'
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Figure 21 - <

_ Slope is negative and the line "falls" as we proceed from left to
right., . - - 1,

T

Bl oy .
. P2 is above and to the left of Pl.

- L= S ke
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Slope is negative and mhe line "falls 1,88 we proceed from left to :
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tatd P, haje the] same
, :

°

; o~ >
J Figure 23

'Slope is zero, li\xe 18 horizontal.

Example 6: P, and P, have same horizontal coordinate.

&

>

£

P

e adEa . b ‘,Figu.rqﬂl»

Slope. is undefined, li‘ne is vertjcal.’

LY
D“. 3

We may sumarize the preced}ng resu.lts as follows

‘\f > O, tha line rises to the right,
If m <0, the lifie falls to the right.
If m = 0, the line is horizontal. f

It m is undefined, the line is vertical.
‘%
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(a) (3,2), (5,2) b
(6) (0,0), (7,0)

) (c) (10,,4), (h,lO)

(a) (5,6), (6,7)

Exercise. 4- ?« -l

(£)

e Te)

;e

(n)

(2,3), (2,2)
(561,10), (562,11)
('3,]:1‘),. (6,28)__ L.

(i)o (9,8) i (9;1)

Which of' the following two ordered pairs determine a horizontal line,
.a vertical line and a line which is neither? '

:

(e) (2,8), (h,8) (J). (0,8), (0,5) s
a. For each of the following two ordered pairs, state the rise and the run
fqr the line -determined by these points. . )
(8) (255)9 (h:8) ' (f)_ (763,763), (25,25)
, () (3,9), (2,1) L&y (8,7, (2,9) . -
(e) (8.5,7), (9,9) (n} (8,10), (0,10) ‘ .-
v (@) (20,10), (5,7) (1) 87,m6x(5a21),'
“(e) (5,3), (5,986) .. (3) E@. %P
e ; - -
A ° o ” » . -
' - .\ ’ ! ' ! - » -
‘a." L ’ g
2 6 Aggolute Value and Relation '. v A ! . e~

We have already obtained experimentally from our number generator, a
‘rélation between s (the mumbers on the scale) and T (the number of turns of
the indicator) This relation ‘was displayed on' coordinate paper as in Figure
25 "We found it to be a function. ILet us examine t%ordered pairs again‘ ’
"Both (1; 10) and (i'g, §§;) are in the £ T8t quadrant, while (~1,10)- and ’
(- 2]6, -) are in the second quadrant‘ We vill ~study t'hese two quadrants
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straight line (Figure.26a). If we .change our domain to the non-positive num- *
. bers, ve have a linear function in tye ste_fon& quadrant (Figure 26b). Use" .
.+ your amwer‘s to Bxercide 1 and form (s,T) drdered pairs. Check these ordered
‘ pairs to be sure they lie on one -of these linear Punctions. Only the ordered
pair- (&O) lies on both. . . . - SO L
» ' s .o
‘o ' - k4 . _
a -
: . el . 3 -
, p -~ . ek . - - - - ‘
. . g
\ - . - ~ i
’ . . . . Y . - ’. Pl . ) - ’.
. . s [ L b
L e~ 50 .. ’
N - a 8. . ~ ! — A
- 5 . . .
EMC ¢ P ’ ’ T " . - ¢
oS . & A R
Z(‘,")‘v‘ : »,‘,3,{_; N . . as N R . " . »”

* ~ Figure 25 -
. [P 4 . '
- - ‘ H " i .

, To deseribe ‘the situation, we must limit our domaid. In the first case,
our domin will be the non-negative numbers and then we lfave a linear function
1h the fi—rsi; quadran:c. We call it linear because all points 1ie on the -same

-
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‘I’ne set of ordered pairs in the first quadrant all appear to satisfy

/s
e eguation . y : “
o . T =108, )
Sy et . 19 38y -
Look, for example, at 41,10) and (15, -3—) . - . )

We call (l) thehlinea‘r- e}uetion for the graph of Figure 26(a). ) 3

exam\?.e (-1,10) and ‘

(See Figure 26(v).) . -

'I’ne ordered pairs in the second quadrant, for

(- =, -) satisfy the equation
(2)

The s

* P =2 108

.IA

In equat,ion (2), the right-hands member, -10S, is equivalent to 10(-S).

» domain of .this function, ‘hovever, is limited to the non-~positive real num- s

bers.
~ 4

tive- number. Rec.all from Chag\ter 1, the definition of absolute value,

U
° >

’ ) |L,=a‘ifa>0‘ S
‘ I I—.-a ifa <O'o~'_"“ -v~v~v~‘~n~¢~'x~1~.

’

~

T ~

Another way, then, of saying -S, when S is non-positive, would be to say

ﬁow our equation can be rewritt-en

lSI

e

»

‘ - .gi:'A..m,
© 7B

T =10 |8| * (3)
_ This form of the equatidn also‘agplies to the firstw'};art of c'>u-r example
v '.where the domain of-that part of the function was all non-negative real )
numbers. -Since *the absolute value of any non-negative number is that o
] same number, the two equations T = 10S ‘and T =10 |S| say exactly the ot
;’ Bame thing. ‘ g o : . N\

1.

e

A=
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The advan{;age of our discussion is that we now have a single equation
" over the domai of all real nunbers which completely describes the set 6f
ordened'pairs :],n ouz' function., ’I‘his funotion is. often referred o %s‘; an
. absolute’ valueffunction. . e N
i
B
N

)'.
Tie !
1o

N }

~

! Exercise 5 ,?-,-./&;J N
1. Check the‘ ordered pairs you obtained in the scale-turns relation to
' " see if ttrey satisfy either I = 10S or T = -10S. r

oé N
. 2. Check the ordered pairs you obtained in the faces scale relation to
' see if they satisfy either § = 35 F or §=- 35 F.

3. Greph each of the following. . “ .
(a) y = Lxl N ‘ ’ .'-'(d) y = -2 |X| )
(b) g»,={]-3|x oo ‘ (e): vy =3|-x|

© y=sll . ¢) Iyl =«

1 T
2.7 Slope-Intercept Form R

" | o

The vvertical intercept of a line is the point on a line where the first
element of the.ordered pair is zero. This is the ordered pair (0,b). Let
‘us see how the vertical intercept and slope can help us to draw‘ lines. Sup-
pose a line has a vertical intercept (0,6) and its slope is ~ -§- . Let us '
draw the line as well as write its eqﬁation.. To draw the griaph s We start N
at ‘the intercept (0, 6) Then we use the slope to locate other points on t.he
line, ‘The f&ct that the slope is negative tells us that the Hne will fall
as ve go to the right, and the aumber -32- tells us how "fast" the line falls.
If we take the_point whicﬁ . know is on the line, (o 6), as one of two
points, we can‘find another point on the l:l.ne 3 unitg to the right and 2
unitg down.; We now have jtwo points through whigh ve may draw the’ line

St e e A R - T ey

(Figu;ee7). : il - N
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vertical intercept

_‘fi;:’w VA o N , T ‘ s ¥ R ‘, o
S ? < . . ‘
B ' N i i . 1 ‘. . g
* - : | ) : : g
- N . ~ - ;
T by slope= -%- d .
ISR 3 ¢ J v i ) i
} ! 3 { : N A R Fis ‘?
; L f0,0)

:
- L] ’
3: \/. - - ’ ‘ . -
Lo - Pigure 27
" . ~ . ) . 3
N ‘ { .
) Since the slope is the same for the entire line, any two poi;xrts of the iine
t.. will give’us the .seame ratio - 32- . Take the vertical.intercept (0,6) and .
© another point (x,y) which 1ies .on the line, then the slope =~ -§- is given .
' by the ratio / . ) T . -
o s ye6 2 ‘ : CT
T ' - x-0 3 : AL i e
.~ o > - — - - - -
e e _o\"l.‘, ;.-.,z.! - 6 = o g . / ){: =
. ‘&33 . Ax N .3 ‘. . - ) -”I».‘ & . - : Lax ees &
o Multiplying both sides of this expression by»x we, get
Lo - % _ ‘
o ‘ ‘ .
, But 3;- is the same as 1, so.ve can again rewrite to get ) L
: ‘ 28 ; : L '
A 7 *a-;’*“;\vl’nvy - §_= - éﬁ . N - M
-, | , - ~—— oy B e °
. B 37 l‘jﬁ —~—
- and, finally, f ‘
. ‘ y=—§x‘1—6.' - L b,
, We can repeat this same procesy withe line whose vertical Intercept is
" (0,b) and whose slope is m. Let take any point (x,y) on the line. Cince 1
'the slope is the same for the eptire line, any two points of the line will »
. give us the same ratio m.  The slope is given by the ratio ,1
< é : . . )
C Y_“_.‘?. n . ' ) \
- ‘ B X - o . P R 2 . ’ a
, boa

. \)4 . t . 536‘1 3 f v
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y = mx-l-b

fo—mip 37 o
AN

o

This equatign can be rewritten in the form

o

4

&t is le;ft to the student to verify that this last equation is corre

Lo

RN

!

o j‘ Except 8 vertica\l line, every straight line can be given an equation

i . .

of this form. The equation °
y=mx +b . . -

’v‘:as derived from our definition of slope and the statement that all portions
(of the line have the sam‘e slope. .If we look more carefully at the derivation
of this equation,\ you will recall tl‘uat we began with two ordered pair's, one
of which wss of the form(o,b). This point has a special 'significance. This
is a point on thé vertical axis. Since we have already said thz;t this line
cannot be & vertical line, we know that it can cross the vertical axis at

tly one point whose coordinates are (O,b). This point is referred to as
the "y-intercept". Looking agein at the equation in this form, we note that .
the factor m is the sXope of the line and the term b gives'the intercept.

Hence,l this form of the equation of a straight line is called the%"slope- , .

“ ' _ intercept" form.® ' .. .
v Exﬂle: Draw the graph of the equation 2x -.3y =

“Solution: This equation is not in the slope-intercept form.

However, we can
* )

solve the.above equation for y.

o .7 -3y = -2¢x +18
foee o EEeE
i :Ox{ce we have the eqiation in this R
. fort, we can-compare it with y ='mx +b ‘gl
snd we see that the s].op? is -§- and the ’ . 1
vertital coordinate of the "y-intercept" 7 4 [

N igs -6. Our starting point is therefore °*
P2

the point with cqordinates (0,-6). The

slope 1s positive so thst line’ "rfsés";

The numerical
value of the glope (-) tells us that a . W1

as we move to the right.

horizontal change of 3 is associated with .81
a.vertical change of 2. Starting with

'+ the point (0,-6) ve can easily find an- . .
other point 3 units to the right and 2 -
units up (3,-4). Using these two points . Figure 28
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. : )
_ we ;: now draw the line.

o ' L S | Exercise 6 . . . .
: Y ‘om o } ) i i
H Calculate the slopes of lines 21, ze,‘ "23, and L 'ia Figure 29, :
*' .’-3 using in each ‘case the two points indicated on tHe lines.
. ' . 'Y ;! .
S - wq - 7.
. .1 S . e ' . ‘
L 2!{' 3 : "l% 2
. L .
v )
T
- » a \ 1 * b Z'I /—' -
: ==
" / Q o’
. - - L
- -2 ] Lo P, 2 3 | o
A
r L.1 3 g .
-
.,.7‘
Figure 29

2, Wnat is the slope of & horizontal exis? a vertical axis?

3 With reference to a set of coordinate axes, select the point ( 6, -3), N

and through this point ? °
o
(a) drew the line whose slope is %.' - What is an equation of this line?
-0 (®) .draw the lihe through (-6,-3) which has a slope of %ero. What is
. the -equation of this line?- — . . - R
. 2 A P . i
4,  Drew the following 1ines: . 'S 3
. . ~ ,.-é -
= .(a) a line through the point (-1,5) with slope % . s
(v} a 1ine through the point (2,1) with slope - -;- :
(c) ‘& line, through the point (3,4) with slope 0. .

-3 .- .0a) a line through the point (-3,4) with slope 2.
" " (e) e line through the point (-3,- II) with slope undefined\"{Wh&t type
of- line has no defined slope?)

i -
5,- Consider the line containing the points (1,-1) and (3,3).
Is the point (- 3,-9) on this line?

- Hint: Determine the slope of the line containing (1,-1) and (3, 3), then

: determine the slope of the line containing (1,-1) .and (-3,-9).
P

- -

\‘1" ‘ - ' 5% { .
. ERIC . . ‘ .
o . . _ )
58
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s X Write an equat&on of each of the following lines: .. ;! Co
s < '37;"\:- ' : \;
L0000 . T ’ ga) ‘me slope' is 3 and the y-intercept nu.mber is -2 v ‘ .
s H et
] 1)) i \ . {The y-interceptf number is the vertical coordinate of the point -, .
(RN f ’ at’ which the line crosses the vertical ax.is In this case the 3
é ! . @; coordinates of the intercept are (0,-2).} ' . <,
. i ™ - L -, ¢ - *
) S (b) The slope is 13: and the y-intercept number is O. | %“

. (e) The slope is -2 and the y-intercept number is % . )
IR (c) Tne slope is -7 and the y-intercept number is -5 . .
. T What is the slope of the line containing the points (0,0) and (3,4)?

What is the 'y-inter_cept number? Write the equation of the line.

8. Verify that the slope of the line which contains the. polnts (- 3,2) and \

(3,- h) is -1. If (x,y) is 8 point on this’same.line, the slope could
be wiitten as r '

¥y -2 y - (-4)
. e or S5 - .

o

Show that bo{:h expressions for the slope give the same eqﬁation’ for'

the line. N ‘ .
.9. Write the equations of the lines through the followlng pairs of points.'
Use the method of Problem 8. K Co o
‘ . (a) (013) and (3‘5:2) (e) (“3:3) and (610) )
e () (5,8) and (0,-%) | (£) (-3,3) and (-5,3) ,
- ' (C) (O, 3),8!1(] ( 3) 7) - (8) ('3:3) and (,’3:5) ’
(@) "(5,-2) ana (0,6) (n) (4,2) and (-3,1) :
1
10. Graph each of the following:
(a) W= 2 % + 8 (@ y=Ixl 15 .
8 ) .
y () = - -§‘x “12 L (Q)H_fbi,_ivl?ﬁ :.31. «“'%-'H : =’ . S
TOTEIEITTT () 3x + by = 16 T (f) y=2]x-}]+1+
: . L '
- w’
A ‘ ’ . ) %
- e _ . . .
ko . : * ? . .’ ,' T8 * N ‘
. ! » ' :\3 ‘R 56 R k
Q ) ) ‘ . .

EMC ) ‘
i o P . . ‘ .
. .
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. In this chapter the "real nu.mber geQerator" was used to illustrate the
"propert#.es of* the real ;}umbers. )

'

<
A relation was defined aB"E set of ordered pairs. . The ¥et of all first

elements in the ordered” pairs of the relation is called the domain of the .
relation and the set of all second elements ig called the range. A function °
ie a’relation such that for each first element in the ordered pairs there is
‘exactly one second element. « oor . ' !

i

\ ; 'Ihe seesav experiment was used to illustrate the nmltiplication, proper- ’
: 'ties_og the real numbers. s
(+) - (+) ="(+)
- w (=) - (=) = (+)
L (R (=) = (=) () = (=)
e, Slope, m, of a straight line was defined 88 on rise . Slope is positive

Uif .the line "rises" as we proceed from left to right. Slope is negative if T
the line “fal_ls“ as we proceed from left to right. Slope is zero for a hor- -

—-tzontal~ line. The slope of a vertical line is undefined. ‘ : .
X The slope-intercept form of the equation of a straight line, ,
l Yy =m + b - i \
was also developed. . ) ) '
' . . .
e ' 5 o
. , ) .
« £ LA -
- ) ) ® ‘
» ,” - ' 4 -
) § . 2 . y
.- - 4] - ’
o ’ ] . . A
¥ ,
- ) .
M / 4 ’ ’
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In the previous chapter, linear relations were in‘broduced through the
The ordered pairs which were obtained lay on &
"More often, the data
In this
We

Mumber Generator Experiment.
-" line because of the yay.in which they were generated.
we obtain in an actuai experiment will be sca‘bibered about somevwhat.

. chapter we wish to discuss the way in which such data can be handled.
will find it necessary to indroduce the concept of the ideal line ,
best fit the data. - . ‘

Only af‘l;er this ideal line has been constructed can a mathematdal
model of ‘bhe experimen‘b be developed.

can often find new rela‘blons whu;;,increase our understanding of the structure

By Jooking at the physical systems we

of the mathematical systems.:

’

. ¢

32 ‘I‘heFa ing Sphere . D .

B » -

This experiment continues our discussion of linear: func‘bion. You have

p;‘ohl‘;;.bly learned in your study of science that all bodies take the same time
to' £all any given distance in a vacuum. You kncw, however, thatr an iron ball
'and a fea‘bher dropped simultaneously from the same height will not reach the
floor at the same ‘blme. Un}ess dropped in a vacuum, an objec‘_l; always en- '

counters some form of resis‘bance exerted by the medium through which the ob-

,ject’fa/&ls .

Ina £luid medium (a liquid or gas) this resistance is not con-

stant, but increases as the speed of the body 1ncreases.

Eventually a point °

is reached at which the upward resistivé force equals tgle downward gravita-

tionel pull on the object.

.

" stant speed.

o

From this point ch the gbject will fall at a con-

*

e o

1 s

This steady speed is called the ‘berminal Yelocity.
a plane will reach a temminal veloci‘by of about 120 miles per hour.

A men Jumping from
A 1
" diver® » with proper control of his bq;d&, can low{erlbhis figure to about 50

1

sky
miles per hour. 4n opened parachu‘be encounters a much greater resistance and

Jowers one s terminal velocity to a point of relative safe‘by.
‘

. To inv‘estigate the phenomenon of terminal velocity, a small ball bearing
is allowed to fall through a thick fluid (Karo, syrup). The ball bearing wil:

N . L. - \
reach its terminal velocity in the first few millimeters and then the ball,

- ’

LY
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A

» * , of an icq cream sundae? T : ' a 4
/\4{1 we have our 1ist of varisbles, we must determine an e pefimental )

will-co'ntinue to fall gt a steady speed. i

* $he ball fall in the same portion of the Jar\. < . v ‘-

know .the distence traveled and the time taken to travel this distance.

. As in all experimentb’\we ghould think of all the possible varisbles we

are lik‘*’ly to meet, and decide how to handle them. Since our invest{gation
will center arqund the speed at which the ball falls through the flpid, we
must determine which of the variasbles will influence this speed.

. To test the influence ‘of the size of the object upon the termi vel-
ocity, we could dr91>\ball bearings,  of different sizes into the same container
filled with the same liquid. > oo )

To t_est the effect of the.jar upon.the speed of the falling ball, we
couId drop the same ball into different size containers filled with vtk}e sgme
- - -
liquid. ‘

!
<@ (

To test the influence of the liquid itself, we could drop ball bearings
?‘\the same size into the container filled with different liquids.

.t

L]

i If w&g\tice any difference in the terminal velocity of the ball in any
of these situations, then the factor that changed is a variasble in which we are '
interested., Can you think of any other variables which may influence the ex-
Reriment? Does the teingeratune-of the liquid influ;ence the speedoof the ball
in the same way that it affects the’ speed of the hot fudge moving off the top

procedure in which we can control th luence of these v

terminal velocity. We will pick one c‘ontain‘er and one qu.id and always have

-

Lo, -
. The termminal velocity of the ball, hOWever, ca.nnot be measured directly.

What we must do is.to.nmcasure the distance the ball will f£all during gome.
time interval. For example, to find the speed of an autamobile we have to .

PR

In'this experiment we will use a metronome as ‘a timing device, thus -
providing an audible signal for selected time intervals. Inrthis case we
pick ‘the “time intervals, and the distances covered by .the falling object will
then depend on these time intervals. We then have dista.nce as 8 function of

time. In & later experiment we'will reverse the roles of time and distance. i
We will fix the Gistances and a stop watch will be used to find the corres-
ponding times. Then time becomes a function of dgstance.

°

To recoxrd the position of the.ball as it falls through the syrup, ' .
fas'ten a thin paper tape %o the side .of the cylinder with cellophane ta.pe. ° ’

P
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S/ee-ﬁ‘igure 1. Dropa ball bearing into the cylinder so that it falls along .
the wall of the cylinder as close to zne &Ige of the tape as postible. Since
. the Velocity of the ball wlll be quit

" needed to follow the path of the ball dglong the edge of the tape. ﬁs the

small, only a llttle practice 1s

ball moves along the tape, mark its.gosition with a pencil each ti@.e ’you hear
the click of the metronome. The metronome should be adjusted to click every

- - 1

- two seconds. ’ '

A small magnel will be necessary . ’ E
" to position the ball along the edge of K
“hg : e [y
““the tape before relkasing it. Hold the .

magnet against the outside of the glass :
cylindef and place the steel ball - e
against the anside of the cyllnder o . .
next to the magnet. The pull of the

magnet will hold the ball in place o / - g
through the glass. /When the magnet is . A

pulled away, the ball will begin to . é_ﬁ - ) L\

fall through-the fluid.
3

The ball can be brought back up )
through the fluid by piac1ng the magnet - Figure 1
against the outside of the cyllnder closest to the ball resting on the bottom
of the cylinder. Raise the magnet slowly along the outside of the cyllnder—.\
The ball will;ollow the magnet tS the top of the cyllnder. '

You do not- have ,to mark the path of the ball for its entire fall. Ten
o position marks taken at two-second intervals will be sufficient ‘for each trial.
At least four separate trlals of the experiment should be made, using & new
tape for each trial. Mark each trial number on the tape and indicate whlch

end of the tape was at the top of the cylinder.®
4

It is not necessary to'make the first mark in the same place each time.
- P e
This first mark gis taken to be the position of the ball at "zero" seconds,

Kthe second mark, the posfca.on at the end of two seconds, etc. ®

e , . ? . T ’ ’ -
N : k4 . . .0 R
3.3, Tebulating ‘Data . ; . . s
’ After completing the fou.L,ylals, fastfen each tape in turn to a centi-’

meter ruler So that the "zero" time c01nc1des with one of the ruler marks.

~ -

»° - : . SR ¥

VLN

- ERIC o, s
'"mm ]\ ’ o . « N SR -3 *Q'v




N 5 , ’ s . - & .
ot : ‘ S s
Meaaure the distance in mill;lmeters from the "zero" mark to the first mark,

from the 'zero" mark to the second, etc. (See Figuré 2.)

-
e

I

~ . s ~
b) . . -
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Record the date for all four trials in . table of the form shown in Table 1.

; - A
/‘, N Fa .
THE FALLING SPHERE EXPERIMENT - °
. _~ " ~ — ;
N . . Trial) 1 Trial 2 Trial 3| Trial ‘4 FAverage | Average
ﬁ Time . Distance Distance | Distapce | Distance |Distance | Distance
R t a a - d d (zm) (rm)
-(secqnds) | (millimeters) () () ey Guess Calc.
. - ’ ’ \}'
~ N ‘
i . .
' Table 1 - -
oy , , :
, 3.4 Analysis of Data o -

. N

If the data‘ is examined, we see that our table associates a cer’ca\_} i
_ value for the distance the ball has fallen (d) with a certain value of the - ~
. . time (t). The fable shows thet there is a relationship between the timd and
. the distance the ball has fallen. The value we obfain for the distance de- *
pends on the time and, therefore, our data forms a set of ordered pairs. As
we have seen before, we can represent ordered pairs of mmbers as po:!.;:té~ on the
. coordinate plane., In doing the experimgi? we Have decided what time intervals
’ to uae, and the .resulting distance the ball has fallen depended oﬁ this time®
interval. The general practice is ‘to make the value of the variable that we

>

- controlled the first element in the ordered pair. Thu8, for this experiment, -
0 . the first element in the ordered pairs will be the time lval‘ue, Ja,nd. the second "~

,,":,, P " - 62 " ’ ) < -
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element will be- the distance associated with this time value. Our ‘ordered

pairs b%:ome (t,d) pairs. It will be helpful fo label the horizontal axis
the time axis and the Vertical “akis the distance axis. ' )
’

43 .
/" We, are going to use the graph of. these ordered pairs for an analysis .
of the behavior of the falling sphere, and it will be E@vantageous to have

the graph "£411" the paper as much as possible. We know that all of our

points will fall in the first quadrant, because all of our values for time

and distance are positive. Instead of drawing the axes, as in Eigure 3( a),

we use the form .suggested in Figuré 3(b). J s ,
'] -
g .
¢ 3 B \
- - m «
3 o
- . (4]
= ]
‘ time 3
’ ] .
. . . 3.
. ) - - , time
/s R
7 (e) S0 .
' Figure 3 o

Now our data will nomrowded into one corfier of the graplr paper
&nd we can meke finer divisions aloxig‘the axes. The distd{lce scale should
be in millimeters, and the time scale in seconds. Once the data is plotted,
you probably will have a éraph which 1boks something like that in Figgre,h.
bl
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Once “the scale‘s have, been set and the data plo‘tted, we have. the problem
of interpreting the meaning of the space between- th‘ese points. In terms of

the physit}al setting, we can argue that the space between adJacent ppints
. should be "filled in". . If we had decreased the time interval to one-tehth

of a second each.time, instead of by “two seconds, We would have found a new
distence readiné ‘for each time, Even thoug}i‘reading the change in position

for such“a small t‘ime change woyld be difficult, the sphere would make a very
smell Change in its positlon for every time change. We now have ‘to decide

how the position of the sphere would che.nge with time. The variaéion is
probably quite regular with two-second intervals. ,There is no reason to suppose
that a regular varitation of p’ositi_op would’ not occur between these points.

Cur first guess as® to & model of the Rehavior of the sphere with respect to

. " time wowld then be to:join our experi-’
a ' ‘ '

mental points with straight line seg-
ments. This procedure ;rill give us
something like the graph shown in
Figure 5.

This method of joining our ex-
perimental poi;ts is perhaps not the

~ most accurege model we cap construct.
When we sey that the sphere behaves

t exactly like our "experimental points,

we are saying that our readings/are °
exact. Can you think of any eagons,
for your data not being exact? Th*s graph “is also” the result of a s ngle

trlal of the ez?erlment. Scientists and mathenaticians do not like to genex-

) . alize the results of a single trial.

B

The errors of measurement-may be great
- 'enough.to make the model obtained not

°

&

2
very meaningful.

If we were to repeat the experi-
ment a number of times and graph the
data on ‘the same coordinate plane, you
would probably |a.rrive at a figlre lil‘ce

‘ that shown in Figure 6. ’I'hi’s figure
,'Shows us someth:.ng about our ability .
to reproduce the experiment. . Do we

obtain about the same ordered pairs a _ .
— '
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second and third time? It alo suggests that the "spread” of the_plotted
i)oints may be <\iue., to certain inaccqracies involved in the measurements. Per-
haps the plotted "points" should not b€ points at all, but small areas. We
are led to the conclusion that the results of an actual experiment, as con-
trested to those of an ideal experiment with ngrfect equipmeﬁt and exgct
measuraients, are two different 'things. We have at this point a re]:ationship
between dista.nee and time in the form of a data table and in the form of a
“graphk. What we desire now is the gygph which will explain the ideal behavior.
of the sphere. ‘The‘data from .eachqtrigl, and the Er_a'ii arrangement of‘the '
data seem to suggest a straight line. You probably cannot"find a straight
line which will connect all the poiffts for any one trial. However, with a
little practice, you should be able to find a line which seems to “best"

/represent all of the data. This "best straight line" wil]ube our physical

model of a relation

e have Mguessed" .

¥

This line represents our model of an
v W

v

v R A

ideal experiment. ™ (Sp€ Figure 7.)

«

. Once we }'ia}re decided to depart from the experimental "facts"

_single st_raight line to represent 03% data, we have a-graph similar to that

Jn F-‘igu)re 7. This graph gives a pictorial relation of time and distance. . -
Our pmblsn now is to gnd a mathematical regresentation of this relation. -

We now have a relation between time and distance in tems of tabular data and

and draw a
-

-~

a graph of this data.

idealized version of this data.

We have also formed a physical model to represent an

We now want to obtain a mathematical model

RO A -1 7ex: Provided by ERIC

which will dederibe the pOSition of the sphere in terms of the time. This ‘;s
our third step in the an%lys:s of the experiment.
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3.5 Graphing the Experimental Data

.

The data you recomled for all four triale should be graphed on a single
sheet of coordinate paper. i/

Ed

If you graph the "braid" arrangement discussed above, all of the points.
should fall in some fairly narrow band. (See Figure 8.) Do you think that if.
you were to repeat the experiment
under the seme conditions that -
your new points would fall within
this band? =

NI

We obtain a band rather thz;.ﬁ

-
a line because of the various .

errors in measurement and th?n-

~fluence of variables other t
distance and time. An analysis /
of the effects of these will be 2

restrved for a future course. " I [
, . time
There, are many straight lines. o 1

distance
N
NN
%)
(]

s

we could select to represent an .
idealized relationship betweéh time N\ Tigure 8
of fall and distance. No single straight line will connect all of the points
for any trial. With thought and ca'}:e use a ruler to draw a line which you
think  best represents all the data from all your trials. Your "best straight-
line" represents the model of an ideal experiment and becomes the physioai ‘ |
model of the relation. ‘ ’ :

P -
we performed the ekperiment tells us that at "zero" time the ball has fallen

"zero" distance., Thus, even though there are many lines to choose from,

.
L

- Remanbervtovinclude the {0,0) point in.your line. . The manner in which .

every one of them should pass through the origin..

- . -

_ We stili' h:ave to“build a mathematical model of the physical relatiohship
shown in our "time-distance" graph. We ¢an do this by repeating the procedure
learned in the Number Generator EJCperixpent. 'I;he slope should not be dibfficult.‘
to compute, for we know that the line must pess through the origin; hence, the
coordinates of the "y" intercept gre (O 0). ‘ The equation which describes the
motion of the falling sphere is therefore quite simple. Calculate the slopeb,

Q‘.lsing any two points on the line. Since the coordinates of the origin are
(0,0), this would be a convenient first point to use. . * o

,-
\




bove .
ot w e

Choose any ¢rbitrary second point 6n'your line with. coordinates (T D). a,rouow-
. ing the procedure used in Chapter 2, we have - ;

. .
iN . *

. D-0_ . .
) L - Teo R

'Using' s value for the slope, the equation;relating time and distance in

the experiment beccmes.

- . -~

e +  a® d=m£c
, N

.. The slope in this experiment has a.special significance. “The vertical

distance from the first point to the second is”a nlzmber of millimeters, while’

the horizontal djifference between these points is a nurln'ber of seconds. The”

slope, defined as the ratio of these two differences, will be ex'pressed in

units of miilimeters/second. The value of the slope is defined as the measure
e velocity -of the ball. Since we have found that’ the experiment yields

a straight line, the slope end, therefore, the veloeity, is a constant. . Our ’

initial- comments are thus confirmed--by the time we begin taking data, the

" ball has already,reached its terminal velocity end now falls at a constant "

. x

.EMC :‘ Coa

rate.

Exercise 1 .

1.: Reproduce the "best straight line" you have drayn /to represen'é> the date
of this experiment on a clean sheet of coordinate peper. Take tlge four
'pie.ées of paper tape used to maik the position of the‘ ball i;nd arrange
them so that the zero merks are in line. On & clean fifth tape make a
mark to indicate a "zero" position and align this mark with the other
zero marks. The other marks on your tapes will not be "in line", but

. fo e
: “ New tape
v . 1 i‘ ;““ ‘! p 1 L4
4 P PR 3 2 N
3:;’, g{fv iy Br | \rsu
: W ok ok nk ok 2]
Y w /';g"
e g i B % it 3] | tapes .
Lo ORI S Y I ) T A4
Plad + »
'. o, . )
. . ‘ ® t . .

*~

should tend .to center in groups. Make a mark on the clean tape to in-

. \d.ica.te your guess a8 to the position'which best represents each
vertical set of marks« vUsing the fifth tape as if it were. & new trial,
mark' your messurements irf the usual way, enter the data in your table R
,an‘d graph the ordered. pairs. Do these pointsg eom"e closer to forming a
straight line then any of your, four trial runs? How does this line com-
pare ‘with the "best line" ybu drew from the "braid" arrangement? -

\)‘ . '/"‘ . . ;7 . L.
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Frofn the data of your four trials s find the average distance‘trav%%.ed
by the ball in each time interval. To do this, add the distance i}x
"each row Of the trials in Table 1 and divide by the number of trials..
Mske a new column in your teble, “Average Distance (m)' and néw "51& s
average distance versus time on the same sheet of coordinate paper
used for Problem l. - How close do these points come to forming &
straight line? You now have three lines on this Loordinate plane.
The first is the "best straight line" from your original data, the
second fs the -1ine obtained in Problem 1, and the third line is the
one o‘btained by the process of averaging. How do these three lines

compare?

Draw the 1st "quadrant using o scale of 1 second for each horizontal R

{
division and 1 millimeter for each yertical division. Draw a line
which passes through the origin and has a slope of 1 mn/sec; 2 mm/sec,
and 3 mm/sec. Label these lines [l, 1 and ,{

Plot the l_'lnes in the preceding problem, using a horizontal scale o.f
1l second per division, and a vertical scale of 0.5 millimeter per divi-
sion. Compare these three lines with the lines in Problan 3.

Drgw a 4th quadrant on a sheet of coordinate paper. Use the same hﬁi
zontal scale (in seconds) that you used to represent the data from the
Falling Sphere Experiment. Make a negative distance scale (in milli-
meters) a.i_ong the vertical axis. Note that' this was the orientation
of your sca whe'n you performed the experiment. Plot the time-distance
data from yl‘ experiment on this sheet and draw the "best" line. Calcu- .

late the slope. What is the significance, ifany, of a negative velocity?

s K

4 .

3.6 The Poi'nt-Slope Form ‘ . _
When we plot data obtained from different experiments involving linear
relations, we always obtain a "best" straight line. The orientation of .this
line on thet« coordinate plane will vary from experiment to exper:_Lm'ent-. Y;Ie can,
however, discuss three general types. In Chapter 2 we found that s line which-
intersects’ the vertical axis at a point -other than the origin would have an
equation of the form Yy =mx +b, as 1llustrated in 9(a). In the Number
Génerator Experiment and the Falling Sphere Experiment, the graphical repre-
sentation of the data passed’ through the origin, Figure 9( b) . We found that

all graphs of-this type could be represented by an equation of the fom y =
7 -

”,

4

d vl B .




‘Suppose, however, wé are to ar-
rive at a graph whlch looks like that .
in Figure 9(e). In. this case, if our .
domain is limited to values' greater
thar; a',‘we will-not.have a:"y-intercept
at all". The slope, however, can ’
still be calculated in the usuai' way .

.

.

# - by selecting any two points on the -
~ graph and finding the ratio of the
vertical distance between these points
to the horizontal distance between
. them. .The slope is“the same for any ¢/

two points on a straight line. To ”

_obtain the equation of this line, the *
point at which the iine intersects
the horizontal axis is taken as our
first point, and this point has the
coordinates (a,0). Then for eny arb-

itrary point with coordinates (X,¥)

we can find the slope at this point.
. Y-0_,

X-a —° 7 , o,
Using this value of the slope, the

,é.

Figure 9

équation relating x and y can be written st e
S

. o . y = m(x - a) .

. . ‘. . . ¢

,This is the third of three "special" forms of the eq{mtion of a straight
.line., It is noi ‘necessary to remembrer all three forms. Instead’ we can find .
a gene;‘al representation for every straight line by usmg the slope of that
line and .any point on the line. In Figure 10 we have a point whose coordinates
(e,d) are known. If we have previougly calculated the slope (m) of this line,

.

then, for any ﬁrbitrary point (x,y) we have

& Toy-a_ . : ;

i _ . x - C . . ?

from the definition of sfope , and thus

. - .
y - 4da=m(x-c) ) .




!

\.

T R
This more general fom of a linear

equatii‘n is called the “ﬁfoint-‘.'

slope" form. This form of" the’

equation of a straight line will

yield each of the three special

foms simply by selecting-the ap-
‘ propriat special’ point 1n éach

instance. This is done below. .

Figure 10 i ) R\
If the graph intersects the y-axis, the coordinates of the point of
1ntersection are (0 ,b). These values inserted in the point-slope equation
gives l ¢ . )

. ‘ y-b=mlx-0),
- and’ then . T "B -

y=m+b (the "slope-intercept" fom).

If the graph happens to pass through the origin, we can meke use of the
"coordinates of this point, (0, 0), ahd obfain )

y -0 =mn(x -0)

y =mx .

‘In & similar manner, if the 1ine intersects the x-a.xis, the point of
intersection has coordinates {(a 0) and ﬂbtain . -_"

¢
L3

y-0=m(x-a):

~

y =m(x - a).

.ERI!

Aruitoxt provided by Eic:




S A
R

1.

2.

3.
.

\
i - ' . -

! Exercise 2 ,

Write the equations of the lines f ’ a.nd L., using the two
1 k2 3

points indicated in each case. o S
y , L,
e AT
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Write the equations of the lines [5.and/ f6

3

. 30 . . . " ‘. - v
, er b
- 7 7 :
. 28\ E : }/
26 ‘\\ A v, )
L e \
: 7
24 .
A // .
1 N R
4 N\ | . )
NEEEEEL RN ~
18 L M 2
‘8 10 12 ,14 N6 18 20 22 2

Find the x and y.intercepts for l:Lne%'[5 and, 16 .

Do not extend the lines .to ‘obtain a graphical solution. Renénber that

the y-ifitercept is the point for which x ='0, and the x-intercept is
\ Y

the point wherey =0 .

-
Iy
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i L, Refer to your time-distance graph obtained in the Falling Sphere Experi- : .

—_— m;ant. Using a point not on the vertical § together with the slope,
N . find the equatiop to represent th&-q.\es:.,gzraight line. Show that dlis -

is equivaient to the equation obtained using the slope-intercept foz;n.

5. The following equations are expressed in point-slope form:

~

- y-6=3x+1%) . -
3 y+2=-2(x - 3) )
. ;o . 1 :'y +H7 = g(x‘- 2)’ L T
' © ¥ - 0.5 = -b(x +3.5)
', Solve each of tﬂese for y. State the slope of the line and the y-
N - intercept’ in each case. !

6.  Teke your graph of the data obtained in the Loaded Beam Experimeft, fit
2 © ,. a "best" line and obtain an equation of this line, using.the slope- Co
- ’ inter::ept form and }he point-'slope form, ’

> -

3.7 Relabions and Converses - .

A g}aphical .representation is perhaps the most.illmninating way to pré-
s:ent a relation: It conveys at a glance much important information. For'
example, in Figure 11(a) a graph of e semi-circle of radius fi/ve is shown.

The graph iftersects the horizontal axis at two points, (-5,0) and (5,0) and
the vertieal ax:Ls at the po:Lnt (0,5). Figurggl(b) is labeled to indicate the
domain and the range. The doma:Ln is the"set of numbers {(d) sucg. that .

-5<d <5. The range is the set of numbers (r) such that O 5 r<5.,

Figure 11(c) shows a line segment in the first quadrant. What are the domain

»

‘and range of this relation? -

(a) ... ) (b) ()
- T r
3 s R i )]
. (0,5) . (0,5) g
. 3]
. & .
("519) (5)0)(‘510) § v(5,0)
" ; a’ domain —| q domain . %

=
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In the Falling Sphere Experiment we have 8 relation ’oetween t e ﬁ;rder
pairs which is of the form- {time value, didtance value). If we tak this setg’
of ordered pairs and interchange. the ﬁrst and second elements ;m eachﬂf§pair,5‘
we will obtain the converse of the relation. This means that we will ‘have or-

$w

dered pairs of the form (distance value, tine velue). The set of distance : .
values will now form the domain and will be plotted along® the horizontal axis P
“and the set of time values will becag@le range and be plotted along the-

vertical axis. ) P . co N

The ‘exemple below gives a set of ordered pairs A and information sbout

the relstion gnd its converse. .

Y

Example: S | /f{
((0,0), (1,2), (2,4), (3,6)}

A=
, 3 |
. (converse) = ((0,0), (2,1), (%;2), (6,3)} )
P -
domain {0, 1,.2, 3}
Graph L F P ‘ range (0, 2, 4, 6}° .
of -,
A 2 g i relation_is a function
< .
_ ' 27 4L-6, N
K4
-+ ~
6 ' .
L domain {0, 2,-1&-, 6} "A“
Graph- .. ) range (0, 1, 2, 3} - |
Of 2 l . -’.‘ . .
- Converse L - ;‘ - converse is a function
< - ’

0 2 4 6  Exercise3

* .

-(a) Graph the ordered pai¥s given below, state the domain ‘and range and tell -
if the relation is a f\mctiox;.. y .
(b) In each case form the converse relation by interchanging the first and
ond elements of the ordered pairs. Graph the converse, state the
\omain and range ‘and ,gll if the converse is a Ifunction, -

1. @ - (2,3), (2% (2,5)) . 3. N=((3,6), (3,-2), (b2 -
5. M= ((5,3), és), (1, 3{} o R = ((-1,-3), (-2,-5), (- 3,-7)1

“ons { . R
{ . - L. N "p" ) ‘
PN 4 . -

C T3 R
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3.8 Inverse Mctioﬁ‘s po» ? iz H o .
' A

. N .~

:Lts converse met the definition of a ﬁmctlonﬁ/ When this situation occurs, @
-We say that the’ x\elatlon and its converse are inverse ﬁmctions. W:ﬁbh this -

definition we see that every relation will have 8 converse but not every

From this point on, when we refer to an inverse LN

@

ﬁmctlon has an 1nverse.
#e mean that the relation :Ln questlon is & function and that :Lts conVerse

ig also a functlon.

1
- =Y
i

as de8cribed in"Chapter 2. ’I‘he&graph can’ also be used to tell us/if the/\
Jﬁmctlon has an inverse, or, in other words, to tell us if ‘the c

any reldtion'is a ﬁmetlon. °

* ) 45 3 ) . , .
Recall from Chepter 2¢that if no line parallel to the vertical axis

meets the g;aph of & relation in more than one point, then the relation is /

4

It i not necessary to, dray the converse relation td decide if
If no line parallel to the horizontal axis meets

a functipn.
the funétion has an 1nverse.
the graph of relation :Ln Wore than one pomt then the converse of the rela-

tion is a function. By a combination of these two graphlcil tests we can

In Pro‘blem b above you should have reported that 'both the relation and“qia

We can use the graph of a relation to tell if the relation is ’a function, -

’

nverse of.-,.

o

’

-

o

de{ide if a function has sh inverse. (See Figure 12.) , - 7
1 ) ° <+ N — / *’
(a) 4 (b)

]

| |
1 . . -
1 1
t |

relation is a fanc.

]
t
1
I
I
!

relation is' NOT a func.
converse is NOT a func.

Aruitoxt provided by Eic:
.

-

converse 1s.NOT a - .
function
| relation 1is ’
(c) -
!
_ - relation is a function
. : converse is a. . _ v
= function_ . - .
. . / chvers'e: is a function
“ ¢ |
— P .
PR P ' ke
~ ] | . ’
e " Figure 12 . )
! . o !
.o ) - Th .
. - * (.
\‘1 ‘ r ) H -
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) <(c, ), the equaaon of the line fis

7 . 3 )

L i &, v . oo
S C o B . . ’ 1] v

% - ' LY
. 4 ) o

o \'" o . o o

v , Just as relations which meet certain qualiﬁcations are puta insa special
clasa ~cailed functions, ﬁmetions which have an inv%rée are given a special
name. They are called one-to-gne i‘u.nctions. Every element in the domain
Will yield'bne element in the range and every element in the range(wWill yleld

~

d

’ one? .element in-the domain. o

A ‘ &
e s s .

o

Exéreise U

l¢ _ Refer *fo E{cercise 2 in Cpaptér 2. For eacﬁ‘ of t',he° graphs, check to see
_if the converse of the relation shown is ‘a function. Are any of these

o " relations one-to-one functions? -

[ ,‘ .

. (a) Whgt are the domain and range of this relation? .
(b) " Is this relation a function?
3.  Does the "best straight line" descrébe a function?

4. ' Are.the domain and range of the "best straight line" relation t}e same
/ : as the domain and range of the "data relation"? Explain. \«" :

5. Are the domain and- range of the equation the same as the domain and
range of .the gr?ph of the best straight line?

»

*6. In the Falllng Sphere Ebcperiment we ‘obtained the equatiqn d'=mt. Obtain
the converse relation by algebraic means. (Hint: solve the equation
for 4 in terms of d.) ' How might we have conducted the experiment to

give the converse relatjon directly? B

~ - > ‘.

..7; ) Do the original Falling Sppere relation and its converse form.one-to-
1 . oa® functions?

» h + IS -

3.9 Graphical Translation of Coordinate Axes ' ’ J

)

A line drawn on coordinate. paper always represents some sort of Izinear
functibn. In Sectior 3.6 we learned that we can write the equation of a'line
if-we know its slope and the coorpinates of one point on the line. In general,
if ?(slope of the line is m and the coord;.nate's of ohe point on the line are

- - ) yta=mnlx-c).

This general form of a linear equation is called the “point-slope" form. The
'Y constants ¢, 4 and m in this equation‘detemine the location and orientation

«
[ . *;' . o—-—

] ;»» \ . .
g . .

. © [P

&) ’ . Y A4

ERIC . = .
T | .

oo . N . . £

> , ; - .

s 2 In the Falling Sphere Experiment, the data in the table forms a relation. ’

.- <
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For many&purposes it is very useful to think of all lines that can’ 'be
dra;m as different positions of a single. line. It is onJ.y the mathematical
’ escg;ption of the line that differs. One point of view would be to think
of the line as having moved frcm one position to another with respect to the
coordinate axes. It is also possible to think of the coordinate axes as
having shifted with respect to the line. This latterf— approdth 1s the one,. °

we'will discuss in this section. RN . . e
. . s “N( .

A 'exce‘llent way' to vibualize this tranglation is to have the coordinate
axes drawn on &’ transparent sheet which can then be moved about over the
figure. An 821_; X 1l-inch sh:et of frosted acetate provides a good surface

-upon which a set of movable coordinate axes may be dratm.

‘ lay, the frosted side of the acetate should be up. Pencil lines can easily be
" drewn and erased on this surface. The "moving" axes must have the seme scalé -
as those on the coordinate axes which are to be translated. '

.ty

. -

In making the over'-

When' /the plastic sheet is placed upon a regular sheet of graph paper,,
the graph 'beneath is easily visi'ble. In this way the graph can e reddily
related to the "new’" coordinate ’a.xes carried by the overlying plastic sheet.

. The new axes may be placed in any msition you wish. The sheet .of frosted s
acetate, a piece of graph pever, and the com'bination of the tm shown' in
Figure 13(a), (b) "end (c)

]

Acetate sht(ee‘; with axeg.
a

P "

/%,,V %g?&;

*** 4'/

2T

Coordinate peper and graph. ~
" ' (b) '
et Vil

i %3’?&%

/U-‘“ f Z ' f&%%%y
. &/‘ .

/}? 4;.-/0"

5'43' o 9
7

{/
:’?‘ /

’A
W
G,

LI

(c)' . -

Graph ewed in relation to new axef -X' and
- L]
Figure 13

e

b
2

Full Tt Provided by ERIC.

v
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. Fi‘gure 13(c) shows the coordinate axes X and Y displaced upward with _
: respect "to the origin of the graph beneath, 'I‘he use of the capital letters
"X and Y on the overlay will help us to renenber that these represent the

. L LY

axes that e translated. o

Tt must be reglized thatf we are to allow any kind of motion of the
_ordinate axes X and Y, this motion might be rather comp]_‘lcated. We can

simplify natters, however, by recogmzing that any complex motion may be
byoken into two part§. One of éhese parts is simple straight line motion,
called a translation, and the econd is gyotation. Any motion of the coordin-

e
,:i: 3

‘A

‘ate axes is given by a combingtion of these two ty'pes. Only stréight line
motion of the axes wyill be copsidered here. There is one other important
point to be made. Any motion of translation can be considered -as made up, of -
T “two translations; one in the,l horizontal direction and one in the vertical

. di'rectio_n. ] T v

) . Suppose we _s'tart with/ethe X and Y axes on the piastic overlay coincident
with the x and y axes,on the sheet underneath. When these axes are trans-
lated the entire P ﬁtic iheet moves horizontally and Vvertically and is not
rotated. The X axis must lways remain parallel to the origipel x axis and

the Y axis must always renain«parallel to the orig:'fnal y akis. =

Figure 14(&) shows the graph of a ligear function and Figure 14(v) sug-
ges.ts one of the many ways in which tlﬁacoordinate axes may be shifted.’ The
° « axes have been moved upward until. +tH€ new prigin is at the original y-intercept
::‘ Using ‘this new posifion of the ?xes, the uation of 'the line would now be of
. the form Y - mX, whkre before it was of the form y - d =m(x" - c).
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Notice that the slope of a line never changes as the axes are trans-

lated. Thig is an extr ely important feature of a linear translation. When
. the axes are rotated, this

tatement is no longer valid.

K
. , Example: . . )
:_.' - Suppose, as inp Figure 15, we have a line which passes through the
e _ origin. The slope of this line is f—g »...and the equation of the line is
:,‘_ i t“‘ ‘: : 1y
] L4 i 4 " ' [l [ ) '
YU ¥ !
r < ~
; . v / // .
N ‘nfﬁ ' ) '
sy .x‘, " * * 4
g .- a 4 .
o /
e ' ’ r '
v, " PRI S M .
: . F4 g //
y . : d
. N x
. . ' . A 4 1
- p an : ’ S o
o H . " Tigure 15 - ) .
- X . @ 3 - . " . ae -
Let us now translate the.coordinate axes two units to the left and four units -
" downward. This new situation is shown in Figure 16. 'The shifted axes are ,
labeled, as before, X and Y, ané thé oriinal axes are shown as dotted lines.
;’/ . 1 * ~ - PR
. o Y y A .
-, / v
-~ ] - -
. 1 i / ‘
‘. .
IR . - 7 I ) [
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~~— ) R ’
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‘You should ;zow verify that tpe slopé of the.line is stii:l % « The
coordinates of the old origin are now (2,4), and’the equation of the line
is"now ¥ - 4 = %_-) (X - 2) . This new equation 15 derivéd from the point-
slope fom.

Vo _ -

Exercise 3 .

——— .

. . .

1. With reference to a set of coordinate axes, select the point (2,3) and ®
through this point draw the line whose slope is % . What is the
equation of this=line? Use your plastic overlay td obtain the rM" "

-

(d) L4 units downwards,
(&) ‘to the left 3 units ‘end up 4 unitsi .
(£) to the left 3 units and down 4 units.

»

2‘. W;lth reference to a set of coordinate axes, draw the line which passes
_ through the points (1,7) and (7,5). What is the equation of this line?
Use your plastic Qatirlay to obtain the-new equation of this line when .
T " the origin is_shifted:

wt

° . (a) %o the x—intercgpt;
(b)_ to the y-interceépt; ¢
. (e) to the point (4,6) . ' -~

A 3 10 Algebraic Translation of Coordinate I&es &‘
Y .
.o

LY

s The mathematical des cription of a graph may be ‘obtained easily by using
the graphical procedure described in the preceding sectionP’It is also de-

_sirsble to be able to describe a graph after the axes have been translated
without r orting to the a.nllysij of the graplg

[

%
.

-

rd

-First we will show that the point-slope representation of a 1ine can be
considered as one in-which the coordinate axes lfave already een (2/ranslated in

v

both horizontal and vertical directions. *
; ‘ v, . s

Suppose we have a-line v'rhich passes through the origin (Figure 17).
“Thé equation of this line is¥y 7 mx . ’

N &
. - "
- " .
> -
. N N Ve
v . .
ot ¢
- i d

o 3
, 9 ‘;-g o !
” . . . (R V) . »

- Q - o~ . . .
JERIC . o : .
. g . - ) .

e ) ] , < -
3 ¢ )

] .-

/fu?ﬁ‘n of this line when the origig is shifted: «

’ (a) to the left 3 units; ~ ' L
. (b) to the right 3 units; . ' . r

. & (¢) b units upwards; - . . '
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- Let us now translate the coordinate axes "c" units to the left and "dﬁ" units B

:‘; {\ . downward. The shifted axes are labeled, as before, X and Y (Figure 18)
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" After the t

) anslations , the old origin no Ionger has the coord%nates (o, 0)
.. Let & horizontal translation to- the left be considered negative and a vertical
. ) transla‘gion downward ralso be negative. In bhis cage, the horizontal transla-
“ tion is (-c) and the vertical“translation (-d) (Figure 19). The position
"\ of the new origin is crunits to the left of the old origim. Thereforée, the
.new horizontal coo¥inate of the old origin is c. -Similarly, the new vertical

oL eoordinate is d. i | 4
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' Figure 19 X e
Since the point (c,d), the coordinates of the ‘0ld origin, is a particular
point on the line, we can now describe the line in the‘ familia:r point-slope

»

form as

)

Y-d=mX-c)

¢
.

If we now write this same e:épression, in slightly different jform

Y+ (-d) =m [X+ (-2)], o

.

we may draw an interesting conclusion_t Since the quantities in parenthe_se;
are the horfzontal and vertical translation distances, tliis last equatibns telle,
us that the point-slope representation of a 1ine is given by setting the
Y—coordinate pl the vertical translation equal to the slope of the line times

the quantity, X~coordinate plus the horizontel translation.

Y+ (vertical translation # m X +[(horizontal translation)]
« The procedure described above is a genere.l one, even though it was de~ v
rived for the particula.r case of a line passing through the origin. ’%uppose,

fo_r example, we have the line ghgwn in Figure 20. The equation of the line

~

is - - T
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. Simplified the new equation of the line becomes Y - 3 =X - 1, or

e

ER

Aruitoxt provided by Eic:
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Let us translate the axes, this time with a‘-horizontal translation of two units
to the right end a vertical translation of one unit up. This franslation is
shown in Fgure 21. The original axes are shown writh dotted lines. In rela-_' )
tion to our new axes, every po‘iht on the line has a new pair of coordinates

(x-2,y-2). 'lhe slope of the line has, of course, not changéi/ “

h-1 .

. s .

. N _ PFigure 21 " <

Let us now use the point-slope method to find the equat:gn of this line.
The point we used originally had coordinates (L 1&), with respect to the new
afx/s its* coordinates are now (4-2,4-1). Thus, the equation of the line is
now ., - . ‘ . ) _ '
S Y- (b1) = 40X - (5-2)) o

and again'rewriting_in 4 slightly different form, ’

- Y - b +.(2) = l-{X - b+ (2)) .

]X + 2 with respect to the new origin. . . l
{ - .

We noMally designate a horizontal translation by the symbol hi gnd the )
Vertical‘tra;mlation by the symbol k. As previous:;y_'stated; ‘a2 horizontal.-
translation to the right is positive (left is.negative) and a vertical trans-

lation upward is positive (downward is negative)

We can’t now.make a general -/
equation to represent the mathanatical description of & line which results ..
a trans}.ation of axes from any previoua point. If the original description off’

the 1ine was

. i} t )

. ~ i
< .. . y- d =,m(x - C),, s e NN B
a . ! 2
? " .
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.

a8 horizontal translation of h uni}:s and a vertical translation of k gives a

' new expression ) - . ’ T '
Y Y -ak = [X-c+k]
N
—~~ Exercise § - ¢ g
l.  With ;'eference to & set of coordinate a.xes,/draw the line whi:ch'passes

-

<

e

.

through the."poinhea(h,fi) and (0,0). What is the equation of this line?
Obtain the equation of this line algebraically\ when the origin has been
translated: C Te -

¢

(a) to the left 3 units;
(b) to the right 4 units;
(¢} to the left 3 umits and down U4 units.

2. With reference to a set of coordinate axes, draw the line which passes
through the point {1,7) and (7,5): Write the equation of this line in
+ point-slope form. Obtain the equation of this line algebraically when
the origin has been translated:
(&) to the x-intercept; .
" (b) to the y-intercept; X .
(e) to the poTHt (%,6). ' N
’Compai'e-.your' results to those obtained graphically in Problem EJ'n
o N R ¢
' Exercise 5. .
. ) : ‘: ' .
3 11 S ary . P -

.Uaing the Falllrg Sphere ’E.‘xperment to provide the data, we investigated

the phenomenon,of terminal velocity. From this data it was also, found that a

, "best straigh® line" could bte drawn which is an idealized fepresentation of the._

P data, This idealized line is a physical model of the relation,. It then fol-
. 1l6wefl that from, the physical model it we.s) ossible to evelop a atha cal"
fiodel of the data. - . , A

The slope-intercept

v, yl work with linear

form of the lm ar equati?n was d rivéd to agsist us
Tt also followed that relatipns ; their|con-

&atgm.

« .verses, and inverse functions could be readily developed. ‘I'he one-{p-gne

f‘unctions. were then introduced.

‘e

-

Finally, the translation of axes, was mvestigated. o Two séparate pro- ’

‘ce,dures were used.. FlI‘S} the translation was performed ,as a physical process f

-«
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using a piece of Trosted acetate to clarify the meaning of the translation.
Next, the mathematical model which describes this translation was evolved. .
~
: ’ * In general, this chepter presented an opportunity for an 'analysis of
Vel 4
some aspects of experimental funct}ons. P - -
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Chapter 4+ L i ‘
AN EXPERIMENTAL ’APPROACH TO NONEINEAR FUNCTIONS

. N o
.41 - Introduction = - A
. Y .

Not all physical situati®ns can.be described b‘y a simple ;"trfaight 'line. h ‘
In certain cases the graph of _one variable plotted against another will be
some sort of curve. Usually these ‘cases can be approached in & fashion sim- -
:!.lar to that used with linear functions, but new mathematical models must

' be found. " . - ) g

In this chapter you will learn that honlinear models ar‘eﬂneeded to rep~
. A ]
q:esent certain physical_ situat‘ions. The nonlinear relations that we will ene

counter hqre represent a more complicated kind of function than the linéar

function .

? «~ .
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These functions will give you a deeper insight into concepts which have N

. already .been introduced.
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4.2 The Wick: A Classroom Experimgnt

I * &~

~ ~ ‘
You have seen and used many ex mples of’ materials which absorb water,

milR or other liquids. e brother spills his milk someone is

apt to use a ,napkin, paper towél or dish cloth to absorb the milk. , . .

r /

When your 1it

’ Years ago your grandparents probably used kerosene lamps for lighting in ' .
their hon\e Your parents ll%gay have a kerosene lamp or lantern for f.se in campe '
ing or at home if the electrical poyer is cut off. The strip of material which "
hangs down into the kerosene and extends up to the burner is called a wick. ‘

. :.['hi ‘wick absorbs the kerosene nd cohducts it to the burner.

-9 ' .5
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o doubt you have observed this phenomenon in a number of situations
1

~ where a liquid travels alfng a trip of material.

At what rate does this abgorbing take place? I5 the rate of travel con-
j atant, increasing, or decreasing" Can we build & physical model of this '
process? How about a llathematical model? An ipteresting e:qpe‘riment can help'v_

N ‘Pw ';‘ -4

tions. )
you to answer‘some of these ques ons ‘ © e, L . P
" F‘or this experiment you will need a strip of filter paper or chromato-
graphy .paper, a containe‘r for/ water, and a Jatch or clock with a sweep second
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hand. The purpose of the"e'xperiment 48 to gather data regarding the rate of
ascent of water up the paper wick. From this data we will a,ttempt‘ to deter-
mine if t}fi movement, obeys some physical law. To achieve this we ‘must some-
how make so progress readings as the process is goi;!f; on. Let us take a
. 8trip of the hz‘omatography paper 15 cm long and mark 4t with dots at. offe

> centimeter in erva!s along its length as shown in Figure 1. Lo
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. ~ This str;p will be your wick. Now slip a regular- paper clip on one +end and&

‘ three- inc’x piece j

hanging the strip from a support. Start with the second mark from the paper

. y ' y ' e .
.clip end and numbe\r each dot from 0 to 7 Mclusive. )‘Iow your strip should

f transparent tape on the other end as an extension for

look like Figure 2. . ) ' S el -
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) A glass or pyrex 500 ce beaker is ideal for your water container but you
L4 could use a regular drinking glass If it is breeay in your classroom a taller
beaker or a quart Jar might make your work easier Xou need to rig KQZ manner

of hanger for the wick. If you use a low containe for the” vater, & ck o;’

e, “ .

d books with the top book protruding out about two 1 c‘:hes ok(er

¢ other books will work fine as a place to suspend the: %,Lc;{

.wick into the water and stick the tape to the edge of the‘;‘pir

‘and hang the wick from hez;g so that it reaches into the watqr*a(p;to the Zero
point \ Figure 3 shows how these two alternate set ups might lopk Ei’thei_"

L » [
o may prove more sgtisfactory for you. . A . co
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. He{e are some he-lpfuﬁints for performing your experiment.

- (1) ght across the water surface and hold the wick on the outside at
the pfoper level so that the zero point of the wick is even with ‘the surfa?é‘ ’

of the water. Do this to determine ahead of tj:me about what level to stiek

. 5
. the tape to your hanger. - : > -

' . v et

(2) Work with a partner so that. when you dip the wick into the water to
'tgﬂe zero point you.r partner can be ready to watch the water move up the wick
. and zfecord the seconds<gassed as the wvater reaches each successive numbered

point. Be ready. It will move fast at the bBeginning.

-~

\\ . (3) Recoi‘d your data in a table listing the numbers 0 through 7 in one
column and the time vhich ‘corresponds with each point in the other column.
Iour table might look like the one shown in Figure L. -

.
.

s f .o . . - L A
. 7
- f & ]
e B i

() =4 L -
"7 |5 tentimeter ' Time Total seconds 1 ° '
~ . » ]
N mark min - sec f-.» expired _, /
5 0 8 . oo 0 ] :
5 . 1 © 78, 08 . 8 " ) .
2 8- is . ks - -
- 3 9 ik an R
Y ‘ k] . 1
. L . . -
o - - 1 , _
‘\‘ * 5 ¥
: 6 » . )
- ’
T . ¢ ‘
4 |
— T —
3 ! .
| g Figyre & N o
. . - . oy . - /
M p . . . e
} \ g A
Q . | & <P : L
- ERIC R i n
. e - . ' ¢ ; . 2
R @



x” . ‘ From your table of recorded ‘data you can form a set. of ordered pairs.
| .. Thch ordered pair should be of the form (centimeter mark, total secondsg, You
may need to repeat the experiment several times to imprové your technique.
'When you feel you have gained é useable gset of data, you are ready to construct
. a physical model of youxr data in the form of a graph Let your oxigin be at
» _the lower left hand corner of a fullgsheet of graph paper. ﬁetermine your
horizontallgnd vertical: scales based on your data so that you will use.the .
~ *Whole sheet of. paper for your graph. Plot your set of ordered pairs on the
graph paper. Yoy are now ready to investigate the mathematics of the Wick.
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4.3 The Physical Model

-

4
The Wick Experiment has given us a set of ordered pairs of the form
(distance, time)k The graph should look similar to the graph in Figure 5.
~ . .

” DR ‘ [ . / o

\ ’ - -
- : )

Time (sec)

- . { ? Distance (cm) )

. ) ‘\ . - . P ) .
N~ b}

. ' : Figure 5 .

N »o

DY VT ough these data points are, in themselves, & relation they are not partic-
agly useful in escri ing‘the behavior of the Wick. We would like to con-
struet a physical model which wofild allow us predict ordered pairs between
the points. For -any intefnediate length in e domain we would like to be able
to determine the corresponding time interval. Quite natyrally we are inéiined
t&nnect the various data points. Our first tendency might be to connect
the points by a.best straight line. However, it becomes immediately obvious
that no straight line can fit the data. In fac{ the array of points pn t e

’

graph carries a strong tendency toward a continually increasing slope. If

; . : \“’ _' - . ", 88 . \/ ﬁ .
ERIC% .. 7 S L B : X

«

P i %
W " £, ¥

- - s

ve

Y

A ]

3 - Yy ‘ o R \" ) . ‘ ! .
% N T R T e R




w; conhect successive po»ints with straight line Begments, we. getxa moéel which
shows this tendency even better. This model seems to say that the absorptio;x
pr@resses regularly for a short time; then there is & sharp Jjump, after which
it again _progresses regularly. In the experiment, we did fiot observe any Jumps '
in absorption which would account for kinks in the graph., We realize that
‘\ there should be no particular reason for the kinks to appear. at the points
which vere graphed. If this were the case and we had taken data at half-centi-
' meter ingervels, there would be an extra set of kinks between the present set
of data/points. "Connecting the data points by segmén’s is possible, ‘but, as
we _pe€, not very realistic.® A more re%listic physical model would Be a smooth
‘ curve through or near the pofints. A smooth -curve representing the data is .
" ghown in Figure 6. Drawing the "best" curve means the "gmooth curve which you
feel fits the data. Even though everyone in the group uses the sam.e data’ this

. does not mean everyone will drag the same curve to %onstruct this physical
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e next step is to see if our physical mode‘ leads to a simple theina.t?.cal :
representation. This model should represent the physical situflton, both accur- -
ately and\ concisely.\ In addition, we > may be able td use the ledge gained
from the mathematical model’to help us understand the physical orld. The -4 2
question rHovw: 18 how to proceed. Since we already know sqmething about: linear '

functions, it may te wise to attempt to. hse this knowledge in the- present cases
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« 4.4 Mathematical Model .
.} . ! . i
' We have generalized the experimental results and.through physical reason-

[y

fhg created a physical model.

. Since the graph is not a straight line it is immediately evident that it

. 1is not linearly related %0 " d . Howeyer it may be possible to form ordered.
pairs by performing some opergtion on d or t which will result in & linear
relatiod. For example, perhaps one of the following types of orderéd Pairs

.will give a linear relation: (d,t), ( 2,t), (d ,t), or (¥4, t) When a mathe-

matician or scientist has studied many relations and their graphs he is usu-
ally able to determine from the shape and location of a graph an approach to

* the releted matheﬁatical model. Remember your work in Chapter 2 and.3.’ When ‘

. ) the data grabhed produced a straight line you came to know that an eguation

-

of the form y = mx ib eould be dsed to describe the graph

* \ N .

. [ "

: - Exercise 1 .,

»

" Bach of the following problems consists of a set of'ordered paigs of the form

N (xVy)' LT . . coe . )

.

setting scales‘on fhe X and y axes.) . . .t

(b) Drawv a smooth curve through the points. , P

(c) Form a new set of ordered pairs following the instructions given

] ﬁith each problem. (Problem 1 is partially completed as an example., )
(@) Graph this new get of ordered pairs on a new'shegt of éraph paper.
(e) In each case part (d) ghould yield a straight line;.find the equation
' of this line using the methods of Chapter 3. o ’

¢ 1. [(O:.O), 2)'1;)) l l) 2 h) (3 9)) (h 16)) 5)25)

Form ordered pairs of ‘the form (x ,y).? ‘ . .
. (0,00, &), (4,19, ..., (25,25)) .
T (1,0), (2,6, (3,16), (5,30), (5,48), (6,700
. Form ordered pairs of the form %,y)- N
RS 2 \i (0,1), (1,1 ),'(2,5), (3,11*5), (4,33} 7 s

Form ordered pairs of .the form ,(x3,¥).

o ((0,3), (L,B), (%,5), (9,6), 16,7), (25,8)) : '

. Form ordergd pairs of the form (Vx,¥). .
R - Lt 1 v -
X TR & " .
]
] Mg
s ' - P .
Q ’ .
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(a) Graph each set of ordered pairs. (Check the domain and range before ',

-

ol




. -

5. ((39,1), (15,2), (10,3), (6,5), (3,10), (2,15), (1,30})

szwiordéred éairs of the form (E,Y). N ¢

6, X Using the set of ordered pairs (d;t) you obtained from the Wick Experi- .
ment, form and graph” the ordered pairs: ; . 'e . !
(a) (a2,t); o : . "
2 - * - ~
(b) (a,t%); . v .
3 , L 4
(e) (a°,¢). ‘

Which of these gicgs data wnich is closést to a st}aight 1ine?

.

f > . 4
.

4,5 The Horizoutal Metronome . .

- ! . .

Oscillacing systemd provide a convenient and’easily tonstructed means for
generating nonlinear fupctions. Such functions also occur—xery often in our
éyeryday life. A point on any rotating wheel exhibits an oscillating behavior. .

) Since an oscillating system pepeais itself in tive and space, measurements can
be started and stopped dt convenient times and places For example, a pendulum
can.be started and allowed to swing until any irregularities have disappeared.
Aften these irregularities have disappeared the timing can be started and the
time‘for one.swiné measuréd. We do not heve to initiate.the motion and start
the timing at the same time. On the other hand for a nall rolling down an
inclined plane the Fiming must be started at the same time the ball is neleasea.

4

. Ig/éhis experiment.we will examine an oscillating system compris€d.of g
hack saw blade clamped in'a vise at one end and loaded at the other with a _ «
piece of lead. Jhe equipment ,i's illustrated in Figure 7. Clamp the blade so
tifat the motipn is in a horizcntal'plane When any stiff rod elamped at at, one
end is pulled as}de, a force is felt which tends to restore it to its original
. ﬁcsition.' When released the rod will pass through the equilibrium position
and the direction of the restoring force will‘be reversed; Therefore, the rod

. will exhibit ta and fro motion, and we'say, it is oscillaping:
P . ' ‘e . V- . : .b{:

Aruitoxt provided by Eic: 4 T
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Figure 7 v

, For any type of mo iorn which repeats itself in equal intervals of timé
. . the time interval oetween any event and the moment the same event occurs again
is called Ahe period. The period is usually measured from a point of maximum
) deflection., For example, the period of the hack saw blade will be the time

. interval for tne lead weight to move from one extreme position until it returns

t 2 . ¢.
o that same position v Ly
The hack saw blade‘without the attached mass will vibrate very) rapidly.

»

The corresponding period is "small. Placing 8 mass on the Tree end of the blade
willbgipwwthe vibrating, motion of the blade and thus increase the pefiod.

v

-~ A little experimentation will elso show that the period of vibration .

[3

depends upon, tne length of the rod, This length is measured from the edge

of the. jaws of the vise to the center of the 1ead mass If ~we allow a short
length of the rod to vibrate, the,period will be.small. However the lonéer
the length (d) the longer the period (t). Tnerefore, thg period of.vibration

depends on the length of the rod. “Other physical characteristics can influEnce -

the period -of the rod. Ome of these is thée size and shape of the rod and an-
other is.the maximum displacement of the swing from the rest position (amplitude)f

) In tnis~experiment ve are’'going to invest}gate how’ the length of the rod
infldences the peridd Once this has been decide%.we must fix all of the other
possible variables. Hence, if we take a particular hack saw blade, a fixed

mass for the load, and keep\th .amplitude fairly constant, there should be no |

n -
infldences on the penlod Other than thes léngth. ~.°7 T e ' '
s 7 o . B &
' ! A LS ' T .
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These conditions and the equipment form a basis for the experiment. For
each selected length of the blade (d) we will measure the period (t). To each
length there corresponds only one pgriod. Thus the two measurements form.an'
ordered pair (a, t). That is, & length- tlme relationship For relations wnich - -
may be nonlinear, it is advisable to have the domaln cover as large gn inter-

‘val as possible. If the blade measures 30 cm, clamp‘lt in the vise to give a

starting length.,of 20 cm. Make a period measurement ac this setting. Shorten

the blade length by 1 i% and take a new period measurement. Repeat this process

of adjusting the blade lengtn’and megdsuring the period until you get a blade

length of 10 cm. Below this 10- cm length the period will probably be so suort

that time measurements bty visual methcds are imggssible. A convenient aFdJ S

more accurate me:rod for devermining the period is to take ﬁhe time for S0

oscillations with a stop watch and the divide this tiMe by 0. This method

of measuriqg period gives é‘more accurate result than trying “o measure the

period for a single oscilletion. Starting #ith the longest length and working . ‘

toward sho T lengtns nas g definite advantage. rong lengths correspondyto

¢ long p s end.are easy to measure. The techniques developed to measure -
longer periods will prepare you to messure the smaller periods. You will

probably ficd }het periods shorter than, 0.5 sec are quitejdifficglt to meas-

L B , .

. The length in centimeters of the blade (o) ig measured from Rhe vise jéws

ure acgurately. .
S

to the center of tne lead weight. The distance should bé measured to the neer- -
e est millimetér. Record 4 in tne first column of your data shee% Use the .

next jwo columns to regord che number- of OSGl%}atlons and the total .time in X )

seconds. From tnis data calculate the period (t) “and record in column.four. -

Your table might look liké the one in Figure 8."

Length Nufber of Total Period )
@ (mm) Oscillations Time t (sea) . -
. ~ -
[ L~
) '

. . .
t
- .
~ - . -

- " Figure 8 . ‘ N
' - A I - ! O‘
"5
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.Now form the ordered pairs

~

(@ ,t) and plot them on a coordinate plane.

£

you like, you can record these ordered pairs in another column Qf your table.

Label the horiqoqtal-axis d, &nd the vertisal-axis t.

Select’ the ;cales for

Mboth distance and time so that the graph will come as close as posfible to

filling the paper.
lar to Figure Qa.

~

period (T)

The graph of the distance-period relstion will look simi-

~

&
L]

* £
Figure 3 -

®
—
\ ®
" t . .
’ &
B .
o
8 .
p‘ i
. L .
. L .
’ “a ’
o0 length (d) .
ﬂoa ?
oo < (a)
p .-
Caution!

linear relation

1ntercept the d-axis to the right of the origin

length (d)
J

¥ ’ -

At first glance this set of points might appear tor suggest a
But a straight llne through thase p01nts, if extended, would

This would suggest the exist-

~

ence of an arm of some length that could not vibrate. . *

I4
. -

Actually, we can sge from the expeerent that as the length of the metro-

nome arm is shortened,. the t1me of the peniod also geks shorter.
cates that the graph should approach the origin instead of intersecting the

d-axis at some other point.

-

/

This indi-

v

*
’

In Figure Jb we have dravr a segment of a curvelthrough the plotted points.

We do not ‘have enough 1nformation tb éxtend this curve closer to the origin at

the present time . .
K4

- S

o
’

re again, as in the Wick Experiment, it is evident that we do not hate

af}ia ar relation.

The graph of our data is not a $traight line.

B
°

You saw in

. Exerciseg 1 how it was possible to form a new set of grdered pairs from\tH °
- . oLk PR

data.
than<the graph of the origingl set:

The graph of the new se€t of ordered pairs will, have & different shape

- ?

hd 4

. N °

V. "

Considex, the p0591bility thatn @ linear rnlation may exf t between d2 and

..
" T : “ v .
.8

oo, Lt

Returﬂ)to your data page’, label a new colgmn dg,
B 4 . ’ !

and compute the value of

-,
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d2 for each measured d. On a fresh sheet of graph paper construct a new set of L.

. /xes with the scales suitable for the distance squared (d ) and the periog (t).

°

Now plot the new d t) ordered pairs. A graph similar to the one you will
probably g'et is shown in Figure 10.

.

_“\

tod (T)

per

~

- : . length squared (d2) . ; .

[ T . ) ) ‘N

. . € Figure 10 T ) L .
- ) - - . ¢
5 has been correct these points will fall on a straight line, amd .
‘related to d2. Calculabe the slope of this line

ar[ld use the point-slope form to de
.,' tion will be of the form t = md2 + b. If the “(d ,t) plot had not been a straight
3

we can say tha.t‘(t is
2

€ e the equation of the line. This equa- .

line, our next step woyld be to compute d° and make a graph using (d3,t) pairs. -

We would examine this graph to see if it gave a lineéar relation,and then proa o

ceed to. find the }dnear equation. -

‘ “We would now like'to see if this equation can be used as a mathemat'ical oy h
model for the curve in the.first graph as drawn in Figure 9b. To check this, )
select spveral velues from the domain d. Use the equation t = md2‘+ b vith . ",
y your values of m and b to calculate the period p),edicted by the equafion.

Form, & dew set of "{heoretical™ ordered pairs (d,t) and plot these (d »t) points -

on the same sheet of coordinate paper used for your experimental points: Com- )

/
mon practice is to use solid circles to indicate the "theoretical" points sand »

open circles for "data points. Use a dashed line to draw a smooth cdurve
through the solid circles so you do not confuse this new curvetwith the orig-

/
inal curve through the' open circles. If this cu.rve compares favorably to ‘the--j

. experimental curve then we can use the equation as our mathematical model of

, o . - .
{ . the metronome. ¢ . _— SRV ' . .J - -
. Kt e 3 I
\

"‘ The domain, as -defined by the ,,e%per‘iment did not encompass all pointsjof

£

. .,

, |
physica’l interest. Since we could not meas.ure short periode,. it would‘ be of -~

°

e
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o -

value -to try to predict them. Great care must be exercised in doing this. It

is* obvious! from the physical construction that before zero length is reached

-

. the weights will prevent further shortening of the blade. In the other direc-

>

tion it is obvious that‘ continued extension of the blade is impobsible. 'With
these limitations in mind the extensipn, ean be camried out in the following

+ way. 'I'he mathema%\cal model or e relatlon between d and t predicts, a perlod -

for eacht blade length 1ncluq,1ng zero. . Values- of d w1th1n the extended domain *
are seIected and the correspondlng periods (t) calculated. These new values,

of d gnd t are now plotted on the original graph and the curve extended. b\

x . course t- can also be read directly off the straight line graph of (d2 t)
- -~ ‘

« R . [ - - _

- - Exercise 2 R : v -

) ’ y

Y 1. +» The following equgtions describe various curves. -
5

(a) wnhat, Torm ﬁf ordered pairs wouldbyou predict in each case,to show &

straight line‘graph? B .,
(b) Use the followihg numbers (-2,-1,1,2) from the domain of the given A
relation t&form the predicted ordered pairs. ’ P
< (c) Plot. these points and chec}c'to see if they fall in a straight line. S \‘,
© (a) er*\e the linpear equatlon for 'eac}? graph ' A ‘
7
P Example: y = 3 (;J;-) + 2 . o L e
Q -
** predict ordered pairs of the form %,y). vo—-
'y=3(-—)+2‘ ) :
. a ’ . ~ l l . , . o
=-—+m—— ‘ (- 55 3) o
£l . s .
LS . In a similar way the .following_ o‘rdered palrs are calculated . ‘_
E . . . 0 .
> a - l l) - .
[ . . : 1 ‘ .
. ' T " ‘ (1 7 v
) t . (—; ) - ML

-~

Nete: O cannot be usé&d to.form an ordered pair for this Jrelation

since % is undeﬁned v —_

Tnis.point is m’issmg from the graph
since ‘the ordered’ pair (0,2) is not
in the relation. .

- ’ .
/ "t The\equatiorl of.the line Is ’
. ¢ ‘ = 3u + 2. The domain of u is all .
A - g - real numbers ex.cep‘t!“fo and Yange of y |
. s T ) ) S is al’ real numbers ,except 2.
@ y=x T o) ye3efel ) yeZakl
) .

‘ . J L. 96 ’ . . - '_
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e

. . . o L
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2. It youy any point on the graph of y = x~, the first element of the .
ordered peir will be the square Toot of the second element. - ' - )
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For example, to fina V19, censider lhe ordered pair of the graph for which
? L)

49 is 'thé second element (7,49).
is 7 which is the -ﬂ@ . -

.
[

From the graph obtain the following values. . ,

e first element of this ordered pair

i .

' Y 1

, RON: . (1) (1.6) |
’ . (v) JIEL . (3) (9.4) , .
v (e) VB L ©(k) (0.8 - o

. ¥ (a) /50 1 (.22 - \/, ’

: (e) VBB (m) (5,55 . ‘
(£) & (n) (6.8)% o :
(€) vIl6 -+ (©) (16)° " .

(h) /TE " [Hint: (76)% = (1.6 x 202 .

. ' ‘ ) (7.6)2 x 100]

3. PFrom your original graph of (d,t) pairs find the value of t corresponding
to @ = 8.5 cm. Using the equation you obtained to describe the distance-
o

period ‘relation, calculate the period corresponding to a distance of 8.5 cma
. °Compa;re the’ two results.

4, Each of the following seté of ordered pairs (d,r) describe’ »varipu.s. curves.
, {a) .Plot the points. . L . &
(b) Draw the curve. . )
;‘orm new ordered pairs of the form (’d ,r) and plbgthese points.
( ){ If the (d ,r) ordered pairs form a linear relation draw the

straight? 1ine and find the equation of the lide.

~

(@) ((0,0), (1,2), {5877 (3,28), &, 2.
(b) ((0,2), (1,3), (2,6), (3,11), (h 18)) R
(c) ((0,2), (2,00, (0, D), & BN '
(@) (), (210), G.25), G B, @ 5

C @ e, R Y, ), G, @ Bl -

B

’

~v

ey, .
. 5. If we consider the domain of d to include all positive real nutbers, use

your mathematical model to calculate the values of the period that corres-
pond to the following values.of 4. : i

“~+  (a) a=50cm o+ (c) a=50cm

. (b) a-=100 cm . i (@) d=1000 cm

hd \ . .- - “
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k. 6 The Parabola

L In the chapter on linear functions ve learned that coefficients such as
.m and b in an equation of the form y
line.

mx +b could.be used to desc:%.be a

We now have an equation of the form y = 2 +b , end we are using

this equation to describe a curve. The m in this case is not the slope.
,Even though 1;1 is a numb'er‘, the ratio of "rise" to "run" for our ‘curve is not
consta‘\nt Since we haWe reserved these letters, m and b , to refer to pro-
-perties of a line let us change the notatlon in this new equation 8o the con-
stants will not be confused with the slope and y‘interc pt of & straight line

Your equation with numerical values for *u and
.We will now use the letter A" to refer to the coefficient of the

b wilXl of course not be
changed-.
‘xe term and the letter C as the constant term. ‘The eJuation will now read

‘ 2

N y =Ax +C.

Equatiens of the form, y = Ax2 + €, vgmere Aand C are real numbers and A is

not 0, are called quadratic equations. -

4

' To investigate the influence of A upon the curve we can get ¢ equal
to zero and then determine the shape of the graph of ¥y 1Ax for different

~ values of A. The tables in Figure 1l give ordered pairs for various equations

of .the form y = sz. The graphs of these ordered pairs are shown in Figure 12.
. . . . -
> Teble T Table II Teble III Table IV Table V
A 12 . 12 2 b
. Yy =X y=§x y=-§x y = y-:-2x
- j .
! X\ly ! X1y . X Yy X Yy X Yy
, 4|16 -5 8\ 4| -8 -3 | 18 -3 |--18
' 2 J.9° - -2 | -
3.0 9 313 -3 -3 2| 8 2 |-8
-2, 4 j-2] 2 -2 |-2 -1 2 -1 1] -2
‘. l * l . .
-1 1 h-1 3 |- 3 0] 0] 0] 0]
. ooy oo | o 0 1] 2- 1|2
, 1| v 1]t : -8
1 ‘1 11]3 1 5 2] 8 2
N 2| & 2| 2 2 |- 3 3118 |. 3 | -18
9 [
\/ s 19| 132 3073 p ~ '
b |16 {8 -8 -
-“? o Figure 1l
o e 9 ? >
9
=% 5 3 i o
BN 100
ERIC | : *
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Once we leave an experimental situstion and have a purely mathematic'al rela- '?‘":;a
tionship it is common practice to let the domain consist of all real numbers i ' ;:%;Z
which will yield real numbers for the range. For all real numbers A and x, :g\d A ol

‘A :A.xg wi:ll be a real number so the domain of y.= Ax2 is the set of all real ’ \?g’ i
numbers. This is the reason for the negative values of x used in he table. y R ‘
If the. relation had been of the form y = Aé the domain would be the set of ’
all real numbers excluding zero. In thesextables, x assumes both positive and '
negative yalues and the coefficient A has five different values.

From the’ tab‘les and the graphs of the ordered pairs we can see that there

is a definite analogy between the m in the § =mx and'the A in y = Ax . A
When the slope m is posjitive we have a "rising" line and when the slope m )
is negative a "falling" line. When A is posi‘sive in y = Ax2 the curve )

:“ _opens up and when " A is neg’ative it opens: "down". For a line |[m| tells : ¢

us hofr fast thé line rises or falls. , The numerical \'ralue of » A tells us . :
.. abogt the "flatness" of the curve. Smaller values of |A] correspond to the
“=Mrlatter" curves (Figure 13, (a) and (b)).

. . Figuré- 13 N -

» Curves of the tyi)e we have shown are examples of & type of curve known ‘as

a parabola. Ce) v
7 N . .
We must now consider the influence of the consta¥t term C om the graph

Of the parabola whose equat$on 1s y = Ax2 + C . NOtice that for C = 0 the !
“curve will pass thmugh the origin. Figune 1k shows the graphs of five quad--
ratic relations of the form y = Ax2 +C . The value c;f A 1is one .for each *
relation but the C has been allowed to vary. N

»
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- size and the same shape:' Take a sheet
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Y= x_2 directly oh the onion skin paper

L,of‘ y = x2 + 2 }s«ex'actly like that of

The' graphs shown in Figure 11& ar - y
\only sketches.of the felations. If you
‘make ‘tables _qf ordered, pairs for each of
them and plot them carefully on a sheet
of coordinate paper you can probably

see that all of the curves are the same 7 .

of onion-skin paper and place it on the
coordinate paper. . Copy th‘e'graph of

and tfxen,move this curve until it coin- .

cides 'ith each of the other curves.
This method will show you that the graph

¥y = x2 except for its placement on the

coordinate plane. : - ., Fleure 14, L

. ,

T Tre graphs of, y = X2 +0 where "A = -1 and C takes on various values .

are shown in Figure 15! . - . -
3 ' k] -
® ’ ~ ° ' )
* ™ > 3 ‘ »
2
- v ]
. . . v
7 ‘
. ¥ . , )
~
- . & s 35
- - -«
. . =-x 2
2
s . = - X +1
{ R
. - xg - Ry '
* v . ¢ - .
. .
. =-f e :
-~ . . 2 ¥
\ . = =X -2 ;
; b
[ M -
. e -
. '('\\' ' ¢
_ Figure 15 N

’

>

.

When we set A =1, all of the parabolas opened upward- and each parabola
had a "lowest" point which we will ¢all the m:i.nimum point. When A had the
value of -1, the parabolas were inverted so that they opened downward. Each

- . -

_102°

v




*of these parabolas had a "highest" point
concluded that the |A]

‘we‘conclude that if A0 the parabola

Jand if ‘A < 0 the paregbola opens downward and has & maximum point.
paﬁabolas which aye graphed from quadratic equations of the form y = Ax
this maximum or winimum point is called the vertex of the parabola. i

~

tells us about the "flatness" of the parabola

( '
‘ ’

or ma;imum point We have already
Now
opens upward and hés a minimum point,
For all

2, C

-

Now let us look back at ou# graphs and see what we can conclude about the

effect 0f the constant term C upon the graph of the parabola

-

¥ = ax’
where the vertex of the graph will lie.
equation y =
the graph 1ntersected the y-axis and the
The graph of the equatlon y =

xZ + 2 the minimum point of the parabola

The C, in

+C does not have any effect ‘on the. .shape of the curve. byt does tell

For example, in the grapheft the

coordinates of ‘the vertex were (0,2).

2 - 1 had a maximsm point where the parsbola

intexrsected the\z-axis and the/coordlnates of this .vertex were (0 -1).

You might ask if the vertex must always lle on the y-ax1s

to this question is "no".

this chapter will have ;heir qerﬁex on either the y-axis or

The answer

However, sll of the parabolas we will gtudy in

the x-axis.

-

. ~ S o X y ,
: . . . 'Exercise 3 5 -
" —_— 5
1 The three .curves shown at the right' X .
-7 are sgztches of the graphs of: ~
. 12 . -
y=EsXx N
N § x2 . : .
. y Yy = 3 ,
y 2k B X
’ “.Match each curve wi the proper
. equation. & N .
kY ’ ‘7 ™ N
. . . _C) ),
2. Describe how the graph of ¥ = Ax® Aiffese from the graph of y = <2
h
. in each,of the following cases. » ! -
' pogee e e EE
. (g} A=0 . o (e) a>1 .
o) o<A<l .7 @) .az-1 ]
. N - . ~ » p . N
. s -
', 103 . -
14 . "
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3. Make a table of at ldast seven ordered pairs for each of the followiﬁg

equations. Use both positive "and negative values of x. Draw all of thé
"graphﬂ on the same sheet of coordinate paper and label each.
. )

.

(a) y=fx22 : (¢) y ==-3x° :
* 1 2 s
() y= 5% . (@) y=- 5 X ) > .

-

' Plot the ordered pairs given‘below and draw & smooth, curve through the

pointa “ . ‘ Y

xlolslalolal ulo e )

y | -3 -2 | -1 0 1 2 3

%

Is this reletion & functidn? Is the converse of this relatlon a function?
Can you think of an equatiOn to descrrbe the relat10n7 .

¢ -~

5. For ,each of the folloﬁ?hg pairs of equatlons below, plot the graphs using

a sinqle set of coordinate axes for each pair. - ' /&
S ek oy =2 +3 C@) y=aPe ) .
y =23 Ty ' :
(v) y=%x2 7 - (e) y=-2,'x2--l -
€ 1.2 & . 2 ‘
y=5x -3 ) yEET =Ly
#2 * N
() y=-2x" 3. : (£) y=-3x +1, ‘
‘y=_?£2__ o . .y=3x2+l ¢ AN

5. Which of the relations in Problem 5 have a minimum value and which -have

* o maximum value? What are_these values?
- N -
Y . . . “ [ &

’." The following equations describe curves which are not parsbolas. What

f

ordered pa%rs would.?ouﬂform in egch case to show & paraBolic.relaxioh?

L .
(a) v = 2xh +3 7 " (p) y = x6 -2

-7 The Oscillating Spring

-

This exXperiment will extend our knowledge of qdadratic ralations In
xamining the behavior of the Horizontal Metronome we found tnat the length ofs :
£ the type t = md2 +b . This particular form of the qQuadratic relation was
ictated by our expeerental apparatus agﬂ its des1gn The domaln of the rela-
iqQ was the set of d. values and the range of the relation the set of t values.

‘ ‘ ‘ 104 s T s
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In many casea, the.relation“generated by the experiment is not a quadratic.’
However, the converse of tbe relation mdy be a quadratic., In this situation,‘
jhe method\)f obtaining the mathematical model from the data must be altered.
'I‘heea sent’ experiment will illustrite .this. We will investigate the role !
played by the converse of the relation which axises from an analysis of the

experimental daIa :

¢

. Springs are simple mechanical devices found most. everywhere Those de=-
signed to be squeezed together are calledecompression springs. Those‘meant‘. t
to be stretched are called tension springs. A tension spring may be made to
“~ perform in an unusual way as follows. Suspend the spring ih.a vertical posi- "
tiorn and hang a masst\b\the lower end. After’pulling the mass downward and
releasing'it} the mass and spring will oscillate up and down over and over
) again,\for'a time of several minutes. The gengral arranéement is shown in

L) .

Figure 16. . ~

i . . Figure 16 o ' W
- . . 3 . 1 .
" One important wariable "in this situatibq suggests itself immediately.- It .
"1is the period of the oscillation. Yo will recall that if'the motion repeats
itself in equal time intervals, this time 1nterval between any event and the .

moment that same event occurs again is calléd the period. For the oscillatin&

- P - E

trips of the ,mass to. Jts lowest point. - o . - oo

As always, all the posBible variables which could conceivably influence

the period must be ‘listed and examined. OSome of the possible influences upon

+
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the period are: the size and type of, spring,used, the maSS of the obJect

suspended from the spring, the total distance through which the mass swings,
) from one extreme to the other, the temperature\of the spring. One, and only °
one, of these influences must be allowed to change during the experiment,
"Ihe other variables mnst be kept copstant 80 that whatever their influence
upon the period may be, it will not be changed during the courSe of the ex-
Periment. Therefoye the period will depend on the physical quantity we let

- vary. . * ) « .
. ¥

\ .
K Only a little experimentatien is required before discovering that a'change
in the maess suspended from the é%ring has a decided influence upon the peridd
of oscillg;ion of the Springd This does “not mean that tlie other variables

which are held constant do not influence the period,. but only that these will

. L s s <

have the same 1nfluence upon.the period during the ex;pehment.

: When a variety 5f masses are used on the spring there cprresponds a def-
inite value of the period _to each mass. Two colunmns of data "are needed, one _
.for the mass and éhe otﬁer for the.period. It will be, conventent to use 100,
200, 300, ...,,lOOO gram masses, thus providing_ten load values ( jL) of the

domain. If standard masses are not used the uasses of the objects that are

used should be measured in advance. A single period is not easy to measure.
Fifty consecutive periods, however, are easily timed with,a stop watch. When

this time interval is divided by 50, the time of a single perlod is obtained.

The appropriate columns of' data are as follows' The first column for
the mass in grams ﬂ )s the second column for the number of osoillations,
‘the third column will show the total time in seconds, and the fourth will
'listithe period (t). BEach column should have its appropriate heading. Pat-
tern your table after Xhd table illustrated in Figure 8.

-

. ®. The collection of mass‘period pairs [ >t} shown in the table is a rela-
tion. +As with linear relations, much may, he learned by graphing the relation
on coordinate paper. Since it has been decided in this experimecz’toilet the
set of masses be }he domain of'the Ielation, mass values Z ) should be ,

- plotted along thé horizontal axis: The range of the relation, the period

(t), should be plotted along the vertical axis.

[
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3. ‘ .
4.8 'The Physfcal Model

® o

Once the éata pairs are plotted on coordinate paper, let. us seek.the sim-

\ plest possible model that will describe the behavior of the osciliating spring.

J Y4 before, we are. inclined to connect the points in some fashiqn. I'f straight

line segments are drawn from point to point, we are assuming something about

_ ‘the behavior of the spring £0r masses intermedigte o the values actually em-
ployed in the experiment That is, ve are assuming the relation is linear
between ﬁoints.\ If, on the other hand, a smoothly changlng éurve is drawn
through or near the pomts, we are asserting a different behavior for the

spring for intermediate mass values. Our, physmal intuition may tell us that

in all probability the smoot;qy changing curve is the best model.'f Whether thisg

leads to a §imple mathematical model or rmot remains to be seen. \ .

o As before, the<drawing' of a single curve through or near the Points takes

~ account of certgin expérimental inaccuracies in the data. Ebcﬁerimental inac-

curacies may cause a slight displacement of, a point one way or another. The -

desired’ curve should go through or near tMe pgints as smoothly as possible.:

‘The smoothness requirement arises o from puz féelmgs about -the physical’

situation. Yowr graph of -
to! Figure 17. o

-
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At this point ag in the Horizontal Metrohome ve will ettempt to develop
a mathematical model (equation) which represents the physical case.gccurately.

Our, results clearly indicate that the period (t) 48 not a linear function of

' ‘the load ( ﬁ ). Can we find a new variable related only to the load l )

which iB a linear function of the period (t) ? Since we are looking for a
simple . combination of [ 'g which when plotted against the period will give a
straight line, let us try the golution which was Buccessful in the metronome

case. Yence we a plot‘of the ordered pairB congisting of the Lload
le period,) (

squared and the [ ,t). The collection of values of l' iB the domain
‘and is plotted along the horizontal axis.

The period is plotted along the ver-
tical axis.

If a line can be found to represent this new graph in a reasonable
way, we can state with assurance that t will be linearﬂaggelated to l 2. Your
plot Bhould look similar to the one in Figure 18. N

)

!

.

period (T)

-

[}

It is‘immediately evident from our graph.thh the load squared ls_not )
linearly related to the period. That is. t ;! m 22 . Our first guess has led-
us down a blind alley.

The situation iB more complex than we at first sus-
pected. e

f v 1 4
v »
¥
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" 24-.9 The Qacillaﬁing Spring Converse Relation

‘Te prohlem now is how do Ve proceed from here It is obvious that using

. higher,pbwers n of l will only give us a, greater bending when we plot
( ﬂ t) oydered pairs. "Let us see if we have missed something by lookihg at .»
_our graphs of'(&,t) and .[ ,t) Trom the two experiments

Similar graphs are
plotted aide by side in Figure 19

3

, v P -
) LN ) . )."" B . '
.-\ n° - : ']
- to . N ‘ '
N ¢ -] -
R - — g R N c
Ul
'® "B
SNt St ’
B 3 ] A4
- . i )
; ] ' . “s h
R o
R - B R - P
.* ,
. Ly .,-e ’
o e - ¢
__— : length (a) - load (z)
- 'Horizontal Metrongue OoCillaLJ.n"‘ Spring
a 1e
- . 5
o The immediate difference is that he Horizontal Metronome graph (Figure 19a)
) is bent so that it_ opens Apward.
that it opens down. In other words,' th 0 graphks are of the same approximate
shape but they are oriented differently with reapect to the coordinate axes. /
Is it possible. that this different orjentation could, be the factor we have -
overlooked? : ' o

, ’ :
The only experience we have had with re-orienting curves was in the Ehap- Xg

ter on Falling Spheres when we discussed relations and their’ conversea There

our relation 1 was a straight line ana its cofiverse was alsd a straight 1ine
oriented differently towards the hortzontal and vertical axes. A graph of a
straight’ line and its converse are illustrated in Figure 20.

° R
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, .  is illustrated in Figure 21.

s Figu.re 20

.

If we construct the converse ‘of our (4 ,t) graph it is possi'ble that the new
orientation will be similar to the graph found for describing the ‘Horizontal
We know that in the case of the Horizontal Metrondme a linear rela-
tion wak found between the sguare ‘of. domain 'elements and the corresponding ~

‘Metronome.

elements of the rangg- Hence we may 'be a‘qle to find a gimple relatjon which ‘

will describe the converse in the Present experiment. There is, of cou.rSe,

no guarantee this will work,"but it is worth a tr&.
t
A simple and direct method for finding the converse relation is to ex-

~

change the elements of the domain for the eleménts of the range. To generate,
th‘e converse in the present experiment plot ‘the period (t) data along the -
horizontal exis and the load ( £ ) data along the vertical axis. The new

A plot of this new relation

It is the graph of the coniverse of .the original

graph will consist qf period-load pairs t, £).

_ relation. You will note that inﬁerchanging the order of the gata pairs inter-

changes the axis lebels also, since they’refer to the physical situatidn.
X
v ~ o

110 ' ‘
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. We immediately recognize that this graph has an orientation very close to the
graph of Figure 19a which opens in an upward direction. ‘We now proc¢eed in our
anelysis by plotting a third relation composed of (t £ ) pairs. A new column
of your data sheet should be headed "period squared" or ta, and the eppropriate
values calculated for each of the original values of t. Now plot the new
(tah‘ﬂ ) points on a fresh sheet of coordinate paper. ) .
If a line can be found to represent thig{new graph in a reasonable vay we *
can state with assurance that m will® then be :a linear function of ﬂ o UtiI—
izing the slope-infercept expression for a line ve may then write‘in general
terms that [ = mta +b . Here asrbefore, m is the slope of the line and b
. is the intercept with the vertical axis. If You are satisfied that the plofted
-~ points can be repgisented by a line, the expression 'Z = mt2 + 8 theiequa-

tion of the line. .

We nov have to determine if the egquation of the line can also be used to
" represeént the (t, f‘) graph of our original data. Make a new column én your
‘ datd sheet, "load ( L) in éiams -- calculated”. . Use values for the period
ictuslly. obtaMed in the experiment and insert in the formils

\ | f=n. 120 ~

‘

afd compyte the associated values of f . Your values of m and b should be

111 &+ - k-

. 143 ¢
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used in the-equation. * . .

-

’ Graph the ordered ‘p.airs formed by the (period,calculated load) relat.ion

on the same sheet of coordinate paper as your (t ﬁ ) graph. Use solid circles
to mark these calculated pbints. Connect the calculated points with a "dashed"
curver. If the mathematical model is a good one this new curve ghould have a

close reseublance to the experimental curve. We still have to consider any *
.restrictions on the domain. The mathematical model will give us the load nec-
essary for any period we desire, however the spring may not be capable of )
supporting such a load. Once we enter the world.of generalizations we can

extend the domain to include all real numbgrs, but as long 8s we remain in an
experimental setting, our domain is definitely limited by the equipment being

used.

. ‘ &

o Exercise 4 T ' -

The table at the riéht shows the - 1 )
experimental data for a new bséi]ﬁ - . (grams)_ (sec) '
lating spring. The load ( f in . . ; 2.5 1
grams was fixed, anc; then the - .. b0 2 ¢
corresponding periods (t) in sec~ ' J6.5 3 ,
onds ﬁere measured. '\ . ) _10.0 7 L

’ b : s k5

o . . ' " 20.0 6
';1 < .‘ ° 3 26.5 * 7 ‘
o J : : ' ' 34.0 8 .

1.. GI:a.ph. ‘the relation and its converse on separatel sheets of coordinate

paper. b T T “

-2.  Graph the (t2, L) relat;ion. Draw the/"best" straight line and obtain

< the eguetion for L. RN

3. Use yqur equation obtained above &calculate values of the load in grams
for each value of the aperiod in the range df the experimental relation.

. Compare the calculated and experimental values of the load. .t

-~ ¢ -

. < e

4,10 Relations and Converses

L]

It was shown that our choice of order for t 'and l had yielded the con-
verse of the parabola. It Ie“very rarely apparent.at the béginhing of gn

L .




I

. .. L] ’
experiment which og'der will yield the most direct path to the mathematical
_model. The order makes no difference in the linear case, but it often cyn-
"‘f)licates our efforts to find expressions for nonlinear relations. The con-

verse can in many cases simglify our search for a mafhematical model.

A graphical repfesentation is probsbly the' most helpful means of recog- f

and its converse

nizing relations and their conferses. The complete parabola

are piictured in Figure 22.
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Figure 22.
The converse is obtained by interchanging the domain and range .of the relation.

The new domain is still plotted along the horizontal axis and the new range
. . > :

-

‘along the vertical axis.
(

‘ There is oné\other important pb"i‘nt to be made. The mathematical models
we ‘have de\)elo'ped in the~ last two sections are more than relations connecting
two variables. In every case eacl element of the domain has associatéd with
it exactly,eone glement in the range’.’ Each length of the metropome blade and

each mass 5}{ the spring yielded only one period and each distancé. on the wick

&3 [ ”
*"_ _ had only one time intervel. The single-valued nature of these ma%ematical
) models®Buts them in the class of relatiogs called fuéctions. The full para-
bola. on t¥1e left side of® Figure 22 is 'an example of a function. Each value

of x flas associated with in only one value of y. .The cohverse relat}?n of .

uf20 . -

o

e - ’ ~

~ 7

. ;} -
ERIC -
IO e o cic R v EN .

. .
.

T




‘ Figure 22, howew*éf, is not a function,
- associated with it.

'

. Exercise o)

& . ,

¥.

o

” .

Each value of x has two values of 'y

P

, : . \
1. . In the series ‘of graphs shown in the figure o the following page, peir

. each graph with another so that in each cese you have a relation and its .
- converse. /| ' b . : Sow
" YWhieh of the ‘graphs in the figure represent functions?

3. Which pairs of graphs obtained in Problem 1 represent one-to-one functions?
T, . {Note:

relationé are called one;to-one functions. )

If both & relation and its converse aré functions, then these two
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s )
.Y 411 Translation of -the Parabola R ) 9
"TT77 e have slready discussed equations of the form y = Ax° + C a
’ ) sgen hov the coefficient of the X term determines the shape of th
and the C term translatea the curve up or down. In this section we
relations defined by equations of the form : ’
- - ' - <
@ 4 2 f
b - _ Y = A(x - k) , §
¥ = i ) ’ \
where A and k are nonzero constants. As an, example, let us draw the
®, . - 2
™~ £ o T i ye= 2(x - 3)° .
R .;1 5 i) "

Let ‘th
of the graph ‘are shown below (Figure 23).

e ‘domain be the set of all real numbérs. A table of values and

3
3

°x et 3 B 5]
) -~ y = 2(x"- 3)2 see 8.' 0 2 8 ’ ,
N A

’

d have
curve
111 study

T

graph of

-

a sketch

-

+

~

Figure 23

«

' This graph is shaped like the parabolic\relation we héve been st

except that the vertex is not on the y-axis. In Figure 24 4the graph

y = 2(x - 3)2 is compared with ,ithat of y = 2x2. )
y 4
(2,8% : (1,8)/(2,8)) (5:8)
: \ |
: . ! ¢ ’
o | ‘
+ ) 1 ] :
5 (1,2) (1,2\(2,2)} (4,2) .
. ’ | . a
) , 1(0,0) 1(3,0) 2
. Lo .. Figure 24 ‘ .
\ ) : 116
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Use a sheet of onion-skin paper and copy the graph of y = 2::?. Shift this

-paper 80 that the graph of y = 2¢® 1s over the graph of y = 2(x - 3) The
two’ graphs vill be congruent. That is, the graph of y = 2(x - a3) is the
same as the graph of y = 2x2 but is 3 wunits.to the r ght. In the same
vey we could verify thet the graph of y = 5(x +2)° 1s 2.units to the left

of the graph of' y= -]é'-xe and has the same, shape as y = Qx?

If we draw the graph of the equation of y=2(x - 3)2 + 2 and compare
. it with the graph of y = 2(x - 3)2, we see ‘that the shape of the graph hasa

~

not changed (Figure 25). T .

The graph of ¥ «=2(x - 3)
. 13 obtained by moving the graph of”
=2(x - 3) upward 2 units. Simi-
larly, we can -show that the graph of
= 2(x + 2) -3 can be obtained
by-moving the graph of y = 2(x + 2)
downward 3 units.

)

Finally we recall that the graph
of y= 2(x - 3)2 is the same as the
graph of y = ,2x2 shifted to thef
‘right 3 units. From this we can’ see
that .the graph of y = 2(x - 3)2
is the same as the graph of y‘ = 2:2

by "mbving the graph" to the right Figure 25

3 units and upward 2 units, -

-

* In later courses jou will learn that it i,e always possible to obtain the
graph of , i
' y = Alx.- n)°

1 from the graph of . s

y=-'Ax2.-

-

by moving the graph of y = Ax2 horizontally” h units and vértically k units.

- RN
P

Exercise 6

.« f

-

For each of the following ’ describe&how you can obtain the graph ,of the

[4

first ferom the, graph of the second equation.

.

(a) g 3(x_+h); y=3x2 . (o) y=—-é-(x+l)2; = -5

2

(b) y="-2(x - 3)2; };= -2x (@) vy -]3-'-(x + -;-'-)2; =L@

3
117
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. and,a:hen draw its graph., ° T, ) o T T
TN oy =2@x+ 2)2
Complete the following table of ordered pairs for the equation ,
- - = a{a + 8}( + 8. i
1Y . P —t
¢ . . l- i . l \ j '
| % -5 . -4 -3 -2 R 5 0 5 : ‘
—_ - y 1.8 4.5_ - .—- ' ) “ —
e - " "" ey L4 [ -

h,.

5.\

6.

. d

- .

.o

Se‘c up a table of at Jeast seven brderEd pairs of the relation below,

Draw the graph of the equatioh in Problem 3 and compare with the graph

drawn in Problem 2. ) ST T oot :m,‘;\

Compare the location of each of the following graphs (wi‘chou%; drawing

the graph) with the location it would have if i‘c were in ‘the form y =
(a) y=3(x-2)°%- () vy = 1<x -2)% sz

. 2 L)
(b) y=-(x~+3) (@) y=-2(x +1)2

»

Find equations for the following parabolas.

(a) The graph of y = xa‘ e :
(1) moved 5 units to the leftﬁ
(i1) moved 2 units downward; = “

. (111) moved 5 units to the lef‘c and 2 units downward. .

‘ i
(b) The graph of y.= -x R

(1) moved 2 units to the left;
. (11) woved 3 units upward; '
(1) moved ‘2 units to the left-and 3 units upward. .
2

o
.

(c) The graph of y = -;-‘-x hoved % unit to the right and 1 upnit

R

downward.

I LR . N

(SN

.(d) The graph of y = %—(x + 7)2 ~.4 wmoved T units to the right an®
‘ [

4 units upward,

.
+

-

Toe |

8.

Set _up, a table of at least 7 ordered pairs for .the relation below,
and then dra

its graph.
2 . .

y=(x-1)-4 s
Set up a table of at least 7 ordered peairs for the following relation,
and draw its graph

2
yv=x -2x-3

Comgare this graph with tWat _drawn for Problem 7.
118 , .

!*4 ‘o
Lo

.

-

™ -
a:;(& ~,§'\

Ax2,




L3 - ~ e —e
. AN N 4

7 [ i . ‘: ‘;‘5 2O am oo
p ) o . T e xS
- h‘le S Ezz ‘ - —'J\ — * " i ﬂlm e $a L. . s
—p . f
In this chapter, we considered a number of experimental relations., In )
H 9“‘
g gach experiment we considered possible variables which could aff’ect‘fh‘é’out— ko
DAELIRS
L come, and arranged things to hold all but one one o: i’ t’hese fixed du.ring the course B
e of the‘experiment. From the data, we obtained & graphical (physical) model
o= o of the relation by drawing a smwooth curve which seemed to give a best fit
» ' to the data pointa‘ We then considered various new relations between a .
ni'éi:hematical model of- the relation. ‘ ’ ‘- :
;. . . - o : .n,. R ST LI
o &:”‘““ "f&‘he experiments in this section gave rise to pa;cabolic relations and
voh led t¢ "some discussion of quadratic equations. ' ) -
st v .
he 3 - .
L. s ¢ -
N ¢ ) -
Lo o ~
e - ¢
[ - .
~ IS N
\x 1 < * o - '
& @ e ' - .
. & . . ) .
- - . * . D) . .
. w - + S~
- - . . t . ~
,f,ic - .é“ _—
Al . L .
. ’ e ) / ¢ r
e . ol » R @, j", '
N ‘ o
I .
o & , ‘
- o Cw < . s, .
‘: - 2 b
KN ' . .
_»' Svupn N
T b L ow - -
. - — s s - St
- - :
s wh i -
S , S . .
-/\ IS
_‘;\ 5 . % v
¥ Y : _
: ' .
. . o119 ) 7
Q . iy 8 , LR
{ e ) 4
CIRU . | ; )




ER]

4
"5.1 Introdﬁcti

~

Nonlinee.r functions and their graphs open a door to many exciting

Chapter*S
-

ANALYSIS OF NONLINEAR FUNCTIONS

I . ™~

Py

me.thematical\ideas.\ In' this chapter you will investigate a few of these

- The slope of'a line is familiar to everyone.

ideas through experiments.

1)

»

'

But’ what do we mean by

the slope of a curve? Can such a slope be defined without cofifusion, and

is it important? You can pro‘ba‘bly gueéss that the answers to these questions

"are going to be "yes".

The concept of the slope of a.curve is gn extremely

important one, and will be developed in this chapter. We will do this by~

-

that there are no other nonlinear curves.

‘ Oanalysis .

4

3 ’ -
5.2 The Inclined Plane <

The simple lens, hdwever, intro-

,. meking an analysis of a ball rolling down an inclined plane.

=

The continuing use of quadratic graphs may have left an impression

duces the hyperbola -- a different curve with interesting new properties.
Fi.nally', the floating magnet will introduce a curve yhich defies simple

L4 N -
In this experiment the motion of = ball down an inclined plane is to
. Dbe studied. A ball rolling down 8 plane will move from side to side as )

well as down the incli

measurement 2 gide motion would complicate the data.
motion, we will use a V-gshaped piece of Bl.uminum as the "plane". This plai'le

ne. Since the distance 'the ball rolls dis a necessary
To prevent this lateral

is incIined to the horizontal by a small angle and a billiard ball is used

' ag the rolling body.
Figure 1.

.

A rimext provided by ERic
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The general arrangement of equipment is shown in
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Figure 1 7

In the Falling Sphere Experiment, th s phere quickly reached a "temiijﬁal
felocity” and from that point it fell with a constant speed. As the ball
rolls down the plane, its speed w111 be cogstantly 1ncreasmg. -The speed g%
the ball at the end of a three-foot roll will be greater than its speed at the

end of a roll of. two feet. In this experiment we are going to measure the

'tim‘e it takes for the ball to travel different distances. We will ‘use only

by
balls of different sizes or weights will not concern us. The angle of in-

one ball throughout the experiment, so any possible differences caus

clination of the plane is one part of the experimental arrangement which has

a great influence on the time taken for the ball to roll a given-distance.

A ball roll:Lng down a steep incline will cover a fixed di6tance in
less time than a ball rolling down a slight 1né‘line. Set {Me plane at a

small angle to the horizontal and keep it at this angle ¥hroughout the ex-

periment.' A+small angle will "slow" the ball enouéh‘ to fgke time measurements

relat"lvely easy.
¥
In th:Ls expenment we are going to @llow the ball to rdll certain fixed

dlstanCES and, ‘using a stop watch, determ:Lne the t:Lme lthat it takes to roll

these distances. We could-release the ball from the top of. tthe plane and de-

termine how long it takes for the ball to reach a certain mark on the plane.

A second method would be to release.the ball at certain distances from the

bottom of the :anl:Lne and determine the time for the ball to reack the bottom

of the plan®., This second method has certain advantages. You will always know
y

exactly where 'the distance interval ends.

[}

The V—shap'ed piece of aluminum should be about 2.5 meters long .‘

’
i




Measuring frcm the bottom of the inclined portion of the plane), make ma.rks
on the plane correspopding to 15, 30, 50, 100, 150, 200 and 240 centimeters.
Set the ball"on the 15 centlmeter'mark and use the stop watch to determine
<7 the time teken for the ball to roll to the end of the incline. It is impozf-
tant to felease the ball and start the watch at the same time. A convenient
method is to place a finger on the top of the ball and hold the stop watch
in your 'ot}}er hand. A few trials wil.l enable @u to release the ball at thg

same tim -as the stop watch is started. ‘

The tme taken for the ball to travel to the bottom of the plane will
depend o the distance from the bottom of the plane. The distance measure-

ments, t er{efore, form our domain, and the associated time intervals will be
the ra . Notice that this experimental ‘procedure is the converse of that
used in the Falling Sphere Experifent. In the Falling Sphere Ebcperiment-; we
picked certain time intervals (domain) and determined the distende traveled
3 in that Yime (range). Repeat the procedure for each distance, and record
in_tsbular form. See Table 1. Mske thfee trials f:or each distance. Calcu-
1,ate and F‘ecord the average time taKen for each distence. To do this it is
necessary\ to add the times of the three trials and then divide by three (the

number ofk trla}ﬁ) . ' \
‘ ‘ irial 1 | Trial 2 | Trial 3 | Aversge | Axbitrary | Calculated
P Distance ime T:une Time Time Time Distance -
. (cm), (sec) (sec) (sec) (sec) (sec) (em) -
. ' .
« \ A
3 / )
T e o Table 1 . ¢ . !
; S ' r
| From this data form ordered pairs of the form (distance, average time).
. _Now select suitable scales for distance and time, and plot the ordered pairs.
TR -
E_ee Figure 2. Again, a physical argu- w

ment-alXows ‘us-*to- construct the physical |
"model by joining the plotted points in

' some manner. Every dlstarice along the
incline plane will‘have a time value

¢ " associated with it. A smooth curve . <
- through or near the experimental

‘points is a realistic physical model ' )
% of the data. - aratinde tdh) a
1 RPN Figure 2
3 2N
L .- 3 N

‘
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5s3 Analysis of the Experiment’”

In meking an analysis of an experiment we attempt to relate the 1nform-

atioh to something from our past experiencet” Ig the Wick and Horizontal )

Metronqme Experiments we met parabolic relations for the, first time, we

found e way to obtein a linear relation and then used our knowledge of linear

;" relations to obtain an equation. In the Oscillating Spring Experiment ; our
first attempts at finding a lineer relation met with failure. We then di-
covered that the converse of the relation had the same orientation as the
curve found in the Horizontal Metronome Experiment. Once we relized this
fact, we were able to relate tl';é graph to something familiar‘land obtain a

’ mathematical model of the.experiment. "The physical model of our present
experiment: as shown in Figure 2,,1ooks similar to the one- found in the
Oscilleting Spring Experiment. Iet us try to repeat the successful procedure )
used in the Oscillating Spring Experiment. !

\ , w
.

3

iy

. - Form the converse of the distance-time relstion. Interchange the domain
and range such that the domain is now the set of time values, and- the range the
eet of qdisténces. Use theae ordered pairs to plot a new graph. , When graphed,

" the new figure will be similar to the curve of the Wick Experiment. We pre- )
viously found that it was convenient to look for a linear,relation between
some power of the time (t) afi the'distance (d). When found, this gives us
enough information in the proper fo:m to directly write down a 1ikel& time-
distance relation. ~

)

Square each of the time values and construect ordered pairs of the form -
(t ,d). Use the horizontal axis as the t° axis, and the vertical axis as
the: d a.xis'. A line drawn fthrough these points and extended will come very

" near the oxrigin. ) This hould be obvious since at zerd time the ball will

1 the point (0,0) es the fixed point, draw the “best

straight line" through or near the other points, as in Figure 3.

2 not have moved. Us

. ©.,(time sec)2 ! 2 . ) ,
. . Figure 3 "
, - lgh: - ‘ o ’ .
Q i d"\} '
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- Compute the slope, m, of the line. We know that all lines which pass throogh

range is equal to the slope times the corresponding value of the domain.

" ‘similarly, from Figure 3 the distance (range) is equal to the slope ‘times

the time squered (domain) This gives the equation ._-‘ .
[ '] v

s 2 A ’ ———ee

. d=mt" . " ™

We now must check this equation to see if.it can be used as a math%na-
tical model for the graph of the (t,d) relation. We can insert values of t .

i{n the formula 4 =m ° t% and calculate 2.value of d for.each value' of t.

r i ' s TR "',"'__;‘J:"' T ':""." T e TR

‘the origin have an equation of the form y = mx. That is, the ‘value of the Ky

For ease in computation, select Qvalues of t which are integers. For example,
if the time taken for the longest distance was '{ seconds you should cal-
‘eculate a value of d for every second from 1 through 7 seconds. Record these
values in the next two columns of your prepared data sheet. Label the ‘
columns arbitr‘ry time (t) in seconds" and "calculated distance (a@) in centi-
meters". Plot the opdered pairs formed by these it:wo columns on the same sheet

of ‘coordinate paper 52 our original (t,d) curve. Connect the caloulated

2

points with a dashed ling. The two curves should compare favordblys:

v

Our equation can be u%ed as e mathematical model to describe the be-

‘havior ¢f a ball rolling down an inclined plané. There is one modification

* which should be made. As before, our equation was derived by use of a linear
relation where the letter m has a special meaning. In our previous use of m

" 1t has denoted the slope of a line. Noﬂ- our equation is not a lJ.ne, and

therefore m as the slope of a line woul&" ‘have no meaning.

o ' Let us changt the notation of our equation so the letter m does mat
occur.M If we replace m w1th the letter A, we ‘will not thing of this as repre-
senting ‘fﬂ'x\ "slope of the curve" Qur final mathematical model is

* - d =At2 . . ‘ !

Exercise 1

i . - )
" 1. Usethe equation d % At%,
4, calculate distance values that correspond to times of: 0, 1, 2, 3,

k, 5, 6, T seconds,

¢ ! x

With your measured value of the coefficlent )

>

2." Dray a vertical line on a piece of graph paper to represent the, inclined

. plane.+ Starting at the top, merk to scale the calculated positions of
) the ball along the inclined plane. Label these positiOns with the
corredponding times. ‘ °

R ' o ' - . '
t Q \ . 1 -, . . .
ERIC § | L .
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3. On the drawing of the inclinéd plane in the exezzcige above,®rery care-
' fully merk the position you thinkethe ball will occupy &% & time of
2.5 seqonds. Using the equation, now calculate the position of the ‘
ball for this time. :Compare t}lis point with your est_imated:positior{ﬂ

4, Multipkying your value of "A" by four will £8¥n a new equation. With °.
this equa'tion‘ calculate distance valiies for times _of 0, 1, 2, 3 seconds.

»,’é‘:; ' Y e avé . . ‘ . N
i N ‘. - w
%’fié': * 5.4 "Slope of & Curve at a Point .

At this point we have a graph of ocun date and e ph;rsical‘and' methema-
.tical model which are abstractions of this data. There are many more aspects
e of the curve which are of 1nterest to us. Mathematics, a8 the physical B
sciences do, sets up methods by which one curve or physical system can be\

- compared’ with another.

RY

Teke a look at the graph of the parabola in Figure 1& “In the :r"egioh .
of the origin the curve is quite flat. That is, it is not rising wery rapidly.
Small time intervals along the horizonﬁal axis correspond to very small ,

‘ _ changes in distance on the vertical exis ys regior it behaves similarly
,to the 't;ottom of mixing bowl. As you moveE-Gut from the origin, the graph
stéepens and rises more rapidly for equal intervals along the horizontal “

is. The same thing happens as you consider points farther out from the

f our mixing bowl. The problem before us is how to describe this

« behavior precisely. — ’
< ) 7 .
" Place youx ruler to the right of the c\ube on your graph and seleck a
shallow or smell slope. Move your ruler parallel to itself until it Just
kisses the curve.\See Figure 4. The ruler ‘should Just touch the curve and
not cross it. The\point of contact should be very close to a point. With i

the ruler in this ppsition, draw a straight line and mark tﬁe point where

g Construct a second line, 12, with a much steeper slope. Use the same
. method as described above. Figure 4(c) is an illustration of the relative
positio'p of two possible lines.

Y

_ S 126 ,
. " . . f ’ 3- ;}5‘:‘ ‘ 4 R -
EMC ’ W, ‘ - ) . .
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.\(t2,d2)

Eigure b
v %
It is e¥ident’/that when the steepness of the kissing liye/is small,
. the curve is very flat and r:fses slowly for intervals along the horizontal
' a.xis. When the curve :I.s rapidly' rising, the steepness of this line is large¢ '
We now have a quantitative way of descri'bing the steepness of a curve. The

teepneg,s of gny curve at a point cen be given a mmber. Let us define the
slope of & curve at & point as the slope of the straight line 'which Juz;t

touqhes the curve at that point. A’ curve is twice aé E;teep‘\;it oune point as
it is at another if the slope of the kissing line:at the first point has

. twice the slgpe of the kissing line at the se_cpx}d point.

.
- To firmly fix these ideas, take a point at approximately the 100 cm
marivon the distance axis and locate the corresponding point on the curve.

" Measure the slope by drawing & line just k%,ssing the curve at this point.

-
~

!
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» Make a few trials-by angl&ng your ruler before agtually drawing the line.

Compute the'slope’of the line. As stated above, this is the slope of the
curve at the point where the line touches the curve. The slope of this 48 \i e

the slope is \
a digtance (d) divided by a time (t). Another interpretatibn of distance/

curve has a particular physical significance. In this casé,

. time is velocity. The question naturally arises as to what veloclty does
this slope measure. Consider the portion of the curve near the orlgin wheré
the ball has covered a short distence and note the slope is small. Also,

[PPSR T Jx«»/«u?“y*‘

recall that near the origin the ball has.f very low velocity. As you move 4 -

out from the origin aiong the distance aﬁis, the slope increases; that is,

the velocity increases. .Ouy observations have verified this. The greater

the distance the ball t?a?gis, the greate% ??EMY?}OClty' Itdﬁiﬁloglcal and ﬁar
also correct to interpret the slope at a point as proportional to the velocity
the ball will have after traveling the disténce d. In general, the” “slope of

a distance-time graph at the point (d,t) is the veloclty the object will

Vo

v; haw@ after traveling the distance d. " ) ¢

- ! N ' -~ .
’ W | .
ercise 2 v "

1. Carefully draw a graph,of the parabola y = %xa, using integrally *
spaced values of x from -6 to +6 inclusive. Graphically find the

. E slope of the parabola at the points for which x equals 6," 4, 2 0,
N/ -2, -4, -6. '
. S - - * ) i
2: . The s%raighy line is characterized by a constant slope whereas the

qdadratic has a continuQusly changing,slope.' It is possible to find
the slope for many pbints on the curve, and hence, generate a new
functaon which would consist of ordered pairs composed of slope and

the elements from the domain. R

From the slopes found in Problgm 1, form a set of ordered pairs

1 " (x, slope). On a sheet-of graph paper, draw coordinate axeg-and " -
N plot this set of ordered pairs. What conclusions can you draw . -
,l ” about this new function?
" % N ’ ‘
3. Compare the slope of the curve in Problem 2 with the coefficient
.. . ofizg~in Problem 1. -
:1_0 T N ' . ¢

5.5 Experimental Measurement of the Slope : .

. -
In the previous section we have defined the slope of a curve at a point

z [
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Aruitoxt provided by Eic: ’

<

wHE the ball at that point. NPV . . . o )

- —Te - Y =

. T ' ‘ ";R
to be the slope of the straight line which Just kisses the curve at that
point. The dimensions of ,this slope are the same as the dimensions of vel-

ocity. Howevér, we have not proven tha? this sldpe can be interpreted as .
e ‘ k]
velocity. R »?
The ball has a Velocity at each and every point as it rolls ddwn an Cow '

inclined plane. If we could but measure this velocity by some experimental

means, we cquld compare the result with the slope measurement taken from the
é&time—distance graph. If the two are found to be the same, We can then sgy | 6+ g
w.%sth conviction that the slapa..of the graph at any point is truly the velocfty

All that remains is to find a)\way to measure the velocity of the ball .

experimcntally. For this purpose a four-foot horizontal section oﬂ the

. aluminum angle is butted up against the end of the inclined plane, "as shown /i
in l“igure 2. The two grooves should mesh as smoothly as possible. This
smaller section of aluminum angle should be carefully leveled after placing -
it on two globs of modeling clay. The leveling can be accomplishe.d :easily - F
by placing the ‘balﬁ.l ®n the track and'seeing if it will roll one way or the

‘bthe:'r. The horizontal section of track provides a mesns for "tapping ofe"
any velocity we choose. The ball rolls down the incline,increasing its . ) '
velocity as it/ goes. When it rolls onto the horizontal tréck, the velocity
no longer increases. It remains constant. The nnchanging velocity of the
ball, while on the horizontal:section, will be exactly the seme as the .
velocity the ball had the moment it left the incline. This velocity is ol
computed from the measurement of the time needed to cover a set distance on P

- the horizontal track:. The value of the velocity is given by the quotient of ’
the distance and time (velocity distance/time) A ° -~

-

This velocity can be ad.justed by starting the ball at various positions

up the incline. First, however2 let us commit, ourselves as to the velocity ?‘{’
expected. Go back to your graph of the time-velocity relation and find the

. point'corresponding to a distance of 150 cm.. At this point, draw the kiss
line. Measure the slope’of this line afid express it as & velocity in centi- !
meters per second. This is the velocity the slope concept predicts for us ) L

. after the'tall has been allowed to‘roll 150 cm down the incline. This is
the‘velocity' we will measure experimentally. .

. .

: Mark a length of 100 cm.along the horfzontal track starting from the
end of the incline. This is the distance over which the motion of the ball

will be timed. Release the ball from the 150 cm point on the ineline, start. .
o ) ‘ . — o 1
~ R . . n i .
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the stop watchm»‘the moment the ball enters the horizontal section of track,
and sto the watch at the moment the ball 'passes the 100 cm mark. Try this
_a few times before teking data. " Now make three trials and record the
measured time intervgls. The vel‘bcity of the ball is now determined by N
_Elividing the distance traveled (100 cm) by the average of the three observed
time interval(s. Ma.ke this calculation &nd then compare this measured veloeity
1n centimeters per second with the previously measured slope of the kiss line.
Allov‘ing for same experimental error, are these two figures the same? If
th:ese two i‘igur_e_s are the same, we have proved olu" p01nt.~ However, if these
two figures are not t'he*same, yoﬁshosffld check both your kiss line and your
méas}L}‘ed velocity. y

/the ball at that point!

The slope of the time-distance graph at a pointhi_gs_ the

velocity of *

s

. It is worth noting that our procedure Lwould enable us,to directly measure
the velocity of the ball after, moving any desired distance down the inclined

. plane. This would enable us to compare the velocity‘to the slope of the line

whick kisses the curve at any point. . ! . >

« - *

- !

- .
>

5.6 The Simple Lens .

*
The use of a lens is rost likely not new to you. Your science téachers
may have used- & lens when you studied vision, or in explalmng how & camera

works. You know that a léns vrlll bring the rays of the sun to a focus.

:
If 'you mount a lens on a meter stick with a little modeling clay and

"aim" at. some distant opject, you can find the image of this object on &
white card on the other side of the lens. :
reversed lei‘t for right, but this need not bother us.

The image will be upside down and

' *If you point the lehs at some nearby ob_.ject, you will f_ind that the -
card will hate to be moved to obtain a sharp focus. _For distant objeacts,

however, the image will always be found in about the same place.

Point+the lens at a distant object outside of the ‘classroom such &s &

uilding or a tree.

(Be sure the window is open.) Move the cardboard screen

until you have & "sharp" image of this” distant object on the card.

Measure

‘the distance from the center &f the lens to the screen.

This distance is

called the focal length “of the lens-and the position of the card is the
‘ focal point. Make three determinations of the focal length.
age value of the three trials end use this value as the value of theﬁocal

Find the aver-
length. If you turn the lens’around so the otifer side faces re object, the

!
i
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fochl length will be the same. Thus, a, lens has two focel points, one on each
gide of the Ilens, Leach’ of' which is the saéne distance from the léns. See
Figure 5. : L

distant tree

/ . meter stick . -

+

Figure 5 s

We have’ seen that for distant ob,jects the imdge ig8 always formed at the
same’d\retance from the lens. For short object distances, however, this is not
‘,_ the case. As we move ob.jects closer to the lens, the image "moves" away from
th‘é_}.ens. The relat:.on between Ehe position of éur object and the correspond-
.Alng p051tlon of the image formed by the lenAwill be the subject of our inves-

‘:t tigation. ' - _ ] '

g

.

. 9.;4&”“’ , We will need a brightly illuminated ob,ject for the experiment. Cut a
~small triangle in a piece gf cardboard. Insert a pin into the base of the
i open triangle’. This pin will be our "object". Darken the room samewhat
during the experiment and place a flashlight directly behind the triangular
o hole®to provide 1llmnination. Obtain a piece of adding machine tape about
G%WO meters long. Fasten this tape to the floor and place the lens at the
= center pf the tape. Try to arrange the lens so that i_‘tm:height s about the

seme as the height §f the object. 'The experimental setup ,is shown in Figure 6. .

|}
P R v,
’ ¢
’ 4
R L i . Figure 6.
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Aruitoxt provided by Eic:

Togbecome familia'r with the general behavior of thg lens, first pla;:e
f:h;..object 8o that its distance from the lens is about twice the focal length.
Place the flashlight directly behind the object and turn off the other lights
in the room. Move the screen until you have the imeage in sharp focus. 4s
the object 1s moved towards the lens, the screex; can be moved back to-find a
new pos:{tion of shérp focus. Now move the object and flashlight so that the
distance of the obJect from the lens is slightly less than the focal length.
It is now impossible to obtain an image on the screen. We_noy know that our
object distances must be greater than the focal length. When'we place the

) object at sbout two focal léngths from the lens you should find the image posi:
tion also about two focal lengths from the lens . As we move the obJect,‘ farther
from the lens, the image moves closer until, for very large distances, the
image is at the focal point. Thus, our object and image distances will always
‘t?e greater than the foeal length. C'arefq.lly measure frem the lens to the ‘focal
point on each side of the lens, and make the twq corresponding marks on-the
a.ddir;g machine tape. These will be our two reference. pointé.

-

We Hi!ll measure dista.nces SLrom the focal po¥ s and not from the lens.

. . On the "object side" of the lens, use & meter stick and make & mark on
the tape every centime‘ber from the focal point to the end of the tape. Repeat
this process for the image side of the lens again starting from the focal
. point. Place the obJect on the last centimeter mark. Always remember to
move the flashlight with the object so that you get about the same 1llumina-
tion each time. ~On the other side of the lens always move the screen until
youvfind the point of “sharpest" focus. Make & two-colufmn table; label the two

, columns "object distance (X)" and "image distance (¥X')".” The symbol X is used

instead of the letter O spo you will not confuse this with the number zero.
Be sure to measure the object and image distances from the focal points. ‘
The measurements.are to be made a&s shown in Figure 7. >

* L
R 2 ]
Ve image distance

. p— X - lens X'
" object distance . /\ o :
y ’ focal . focal . ’

object - point polnt ...

¢ Figure 7. .
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After i‘inding the location of the in&e when the object is at the last
centimeter mark and recording this information in your table, move the object
close;‘ _té the lens. The object should be moved two centimeters at a time,
until the iniage is clearly out of focus. Move the screen to bring the image
back into focus. Measure and record the new obgect and image dlstances. As
you move the object eloser to the lens, the screen will have to be moved away
from the lens. For each reading contlnue to move the object (and the flash-
llght) two centimeters at a time until the image is definitely out of focus.
Then move the screen until the 1mage is back in sharp focus. Repeat this

process for a number of trlals until the screen is+ho longer on “the tape.

Once we have collected the data, we will plot the object-lmage ordered
pairs (X,X'), drav a physical model, and then attempt to find a mathematical
model to represent and explain the relation. Notice that this threefqld oper-

-ation has been our plan throughout the text.

(a) Obtain data relation 4nd graph.

[y

’ (b} “ Construct physical model (best line.or curve).
d ¥ »
(¢) Find mathematical model.

‘Set scales on the coordinate paper so that the graph will "flll" the
paper. The }mage position deper}ds upon the object position. The set of ob-
Ject positions is therefore-the domain and is plotted along the hor#zontal
axis'. The set of associated image posii:ions forms the range and is plotted
along the vertical axis. You pi‘obably will have a graph something like, that
shom}n Figure 10. Again we have
. the question of ril],;;ng the space

)

® between the pointss }s we move closer

® * to the focal point ok“ the lens, ‘the

o) . image moved a y from ,’the other focal
o point. With every ingemediate object
O]

distance there must be associated a

® o new image dlstance. For object dis-

image distance

\ N
-0 tances about three focal lengths from
0 ) _ the lens or more, it may appear that

o

you can mdve the object a few centi-

®®®® .

‘object distence-* .
L4

X

y & moved a small distance that is often
.l
/

meters and still have the same image

" position. The image has, Jovever,

Figure 8 N
difficult to detect visually. The

} 4




-

'. -
procedure for draw:lng 8 "best curve" seems ﬁllly Justified in this case. - 'l'his
curve is our physical model of the o'b.ject image relation. o7

I .

” . «

[

. - Exercise 3 o ,ﬂ{k \
« -1, In the lens experiment what is the domain and ‘what 1s the rangef,
2. Does the graph of the relation (FigureB) represent a f‘unction? Why?
3. Would it be meaningful to pass a smooth curve through the ploﬁtedn
points? Why? con :
4.  Discuss “the possibility of extending the graph of the curve to very

large orévery small object -distances.

57 The Lens Relation - )

Obviously, X and X' do not form a linear relation. As you recsll, we

were able to bbtain an equation to represent parabolic relations by ﬁnding

8 linear relacbionship between some PoWer of a number in the domain a.nﬁ the
corresponding number in the range. TFor example, in the horizontal me’sronome
+ 7 relation we took ordered pairs of the form (4,T) and from these forméd "another
relation with ordered pairs of the fom (d ,T). This gave us a linear rela-

tion from which we were gble to find an equation to represent our curve-

In this experiment the curve is not 11near ‘nor; does it resemble the
parabolic relations. We know, however, that as X decreases, X' increasés,
that is, as the ob.je;:t approaches the lens the image moves away. This\ty:pe
of behavior rules out forms like (X2,X')‘~ "Why? Notice, however Shat as X
decreases, a quantity such as. -}l? increases. Th.gls means that as % 1ncreases s
'X'will also increase. Although the relation (X,X’) was not a linear rela‘tierr,
perhaps.a set of ordered pairs of the fom ( X’) will be. Select elements
from the domain (X), fom (—) values and then associate with these the ap-
propriate elemehts from the range (X*). Enter the values of -}l? in a new
column on your' data sheet. Use a new gheet of coord.inate paper and plot ”
the relation formed by this new set lof ordéred pairs (-— X*). The graph of
these points should appear linear. Hence , }l{ and X' do form a linear relation.
. . If this had not been so we might have attempted peirs such as (;2 ,X'), ete.

Your new graph ,probably looks like that ghowvn in Figure 9. - ‘ ' ;

The best straight linte through these points should come very close to
the origin. For very la.rge_yalués of %, -}l? can be extremely small. For ex-.
amplé, we could use the sun as an object. This would make X greater than

e 134 . ] ) by
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1012 cm and % practically zero. "By qur definition of focal point, the image ,

of the sun would be formed at the focal point. Hence, when -]= is practically
zero, the image distance X'will also be gbout zero. From this line of reason-
"ing we see that the line, when extended, X _ :

should pess through the origin. , ’ ©
; ' AR o)
Now, using the origin as a start- ©

ing point, draw your best straight lihe 10}
through the data points. This is our - . ©
physical model of the experiment. Cal’- ©
culate the slope m of this line. ‘ 0O

We know from our work with linear
functions that all lines passing through
v
.~the origin are of the fom y =

Therefore, the equation of our line is © 1:(0,0)

Iy
)

Sy X =u(z) = §

PR = my X Figure 9

f [N

¢ We stilk must determine if this equation can be used as a mathematical

model of our original curve. Using your expez°\;fmental values of X, and the
equation Xg@= %, compute corresponding values fos X'. The calculated value‘
for m should be used in 'th'e equation. Enter the calculated values of X'.in

* ‘a new column of your data table. Plot the new ordered pairs (X,X* calc.) on
the same sheet of coordinate paper as your exp_erimental points. Use small
solid circles for the points and connect them with & "dashed" curve. Compare
the calculated and experimental curves. The two curves should compare favorably

'© " We can now say that
- f

’ 1 m .
t () - B . .
X' = m(x) X ‘ \
can be used as & mathematical model of our experiment. ’ r

Although both the dcmain and range of our date function were soﬁewhat .
limi‘bed, we\iave every reason to believe thatnthe above equation is valid for “

" ..all values of\X and 'X* where both are greater than zero. This cdhjecture, of
course, should be tested by mrther experimentation. ) ’

7

It is impontant “to realize that the symbol "m" in the equation X! =%

4 .

1 incot éhe slope of the gre.ph of the(X,X’) relation. * It is, on the other

hand, the slope vrhthe ( ,X') relation. For this reason, it is best to replace
. the symbol "m" by some other symbol that indicates-a constant Qalue. But what '
55»'\"\011“&“ is it? You have obtained the numerical value of this constant , and it

4 . ~
b ‘
g
‘I"
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is interesting at this time to compare it to the square of the focal length
(f) of the lens that was used. Allowing for some experimental errors, you
should find that m f2 This is the case, ‘and We can now write our lens re-
. lation in the final fom 2 . e . .
s . . 5 . -0
o= 5 .

Our equation now suggests that an extremely important generalization

»
B e T NN

- of our lens relation can be made. Perhaps this equafion can be used to 'repre- .

' sent the location of the obJect and image for any lens that we may wish to

.

use. This turns out to be the actual ,case, as has been verified in many ex-

P

2

periments in the past.’

»

Exercise %
K , . . F ' .
1. The following table containg data teken from'an experiment with gases.
» e R T Ve e
Pressure | Yolume e
. 1b/in° e’ T, _ ;
¥ 169 o I N
H N N
< £ '
- > 135 , e ——fluid
. ' 10 68 ) column
. V. gas o~
12 56 )
JR 15 b5 . e ~ . )
) - 18 - 38 ‘ _ !
. 20 Y s 1 g
: 25 25 ' ’ '
36. ©23 .
35 19 ]
' ]
¢

.

By raising and lowering the fluid column different pressures can Be®
exerted on the gas conta1ned in the left portion of the tube. As the

fluid column is raised, the pressure is increased and the gas volume \

»
’

decreases. N

]
‘?\a\ Which elements of the tgble are the domain an.d which are the range?
4 - -

T ) (b) On a-coordinate plane, plot the ordered pairs from the table and

construct a phySlcal model. N .

L (¢) Fomm a new relation ( ,V) and plot these new ordered pa1rs.

(d) Using this information, find the mathematical model which best
represents the data.

136 L .
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B cluded from the domain and range of ‘

5.8 -

The Reciprocal Function -

In this experiment we have obtained the relation

. N .
' 1
»

1 =z S,
/ ) ' :
" This is a particular example of & more generasl relation )

'kecall ‘that we have' studied relations of the form y =

se relations .'linear" becaube they grap as a straight line. We'
also studied relations of the formm y = Ax2 whicl'z/*e:'e called quadratic rela.-
"Quadwatic" comes from the Latin word quadratus, meaning squared.
we are concerned with a relatign of the form y = k(-—)
For this reason, let ug call this a reciprocal rela-

. tions. Now
In this case, y varies
as the reciprocal of x.
tion. The graeph of y = -}E reveals the basic pattern of this relation. For ex-

tremely large values in the domain, the corresponding values in the range are
(" =ery close to zero. Fon extrenew small values in the domain, the correspond-

LA

ing vhlues in the range are extremely large. This reciprocal relation is

clearly & function, for fo every element in the domain of the function, there
B L4

We can also see this graphically. No

vertical line cuts the curve in more thgn one place.

corresponds one element in the range.

l;et us consider the graph of the relation y = -}5- for negative values of
x in spite of the fact that negative values of X in our txperiment apparently
have no physical significance. Now graph y = ,-}5' for all possible values of x.
From our experiment, k.= f2, so k is greater than zero. Sin}e k.is positive,
X and y must both be positive or both negative. L
Thus, when the domain of the mnction @
y -i- is extended to include «2ll real
numbers ;4 0, the graph we obtain is
shown in Figure 10. Why is zero ex-
this function?

‘ This more coniplete relation is

&' function because we still have one ol ’ ‘x
elenien_t in the range of the relation ’
wnich corresponds to each elefient in ’ )
the domain. Note that the domaein‘ex- ) .
" cludes only the single val;.:.e zero., t ' v, .

This reciprocal function is so important

. | .””

=i o o , 2
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B
that 1ts graplr has been“given the special name hyperbola".\ A1l hyperbolas

have two portions, as shown above. Hyperbolas are v \ery closely related t
the parebolas we encountered in Chapter 4. . /

»

- All relations have converse relations, and we should inquire as to the

converse of a reciprocal relation. When we 1ntercﬁgnge the domain and i'ange
. - Froaim A AR e N v e

of this relation, we notice a curious thing. When we form the converse, each "

ordered pair that we obtain is seen; to be the same as one of the ordered pgirs
of the relation itself. (Prove this to your own satisfactiqn.) "This means
that tile graph of the converse reciprocal reletion is identical to the graph
of the relation. This same conclusion could have been found algebraically by
finding t?lat X = % .

Without going very far into a more complete physical analysis of a
lens, let it be said only that negative ob,ject-values and negative image-
values actually have as much significance as ﬁgsn'.ive values of these same
quantities. Amegative X wolzld‘arlse for an* ob.ject, placed at any position to
the right of the left-hand focal point. (The light rays are always cor;sidered
to move from left to right.) Similarly, a negative X'is an imag&,distan.cé .
measured to the left from the right-hand‘ fc(cal point. The images that are
obtained in these situat::Lons are: not the kind that ,can bé proJ ect‘ed upon a

' .s‘creen. They can, however, sometimes be seen by looking directly into the

lens. | e .

\

. ¢ Exercise 5
" 1. Poes the range of the function X' =u-f}:{2— include the value of X' =0 ¢ *
) Explain< ) - . ] ° ‘
2. Does the simple lens equation Xt = 5 with the range and domain re-

stricted to the v8lues that, can be obtained experimentally, represent

SR a function if X and X' are interchanged? ¢ Why? ' ) )
) . 3. The focal length of the lens found in mahy cafieras is 50 cm. Calculate

. X' in centimeters for an object at a distanceé (X) of 1 meter; 10 meters;
e . 1.5 X 108 meters (the distance to the .m:'ﬁon); and 5.8 X 10% meters (the

1
( 0 St e oy v L ey

digtance to the sun).
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For each of the relations above, .

. (a) For what value of x will the denominator become zero?

(v) Is it possible for x to be equal to zero?

»

{(¢) Find the value of y which corresponds %o the following values of
x: ! i
£ ('8) -3, 0, 1, 3).4)“) 7] R

Using the values Just found, form ordered pairs of the form (x,¥)
and plot on the coordinate plane. B

Join the points with a smooth curve. Remember that *there will be

one number (part a) which is not in the domain of the relation.

It there any number which is not in the range of this relation?
If so, what is it?

gation of the translation of axes. This translation was performed in tw
directions ) both horizontally and vertically.

Further in the text a translation was also performed during the dis
cussion of the parsbola. In this case it was the curve itself which was
! translated. ! : . ‘

. ’ -

." ‘It is now advantageous for us to translate the axes in the case of
the hy'perbola. Referring to Figure 7, you will recall that both object

and image measurements were made from the focal paints. The values of these
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measurements were used in obtaining the ordered pairs' from which the graph

]

of the hyperboia in Figure 10 wvas

, "
drawm. &, .

N ' . “When the lens experiment' was '
; . ] ) -

. first performed, you measured the

object and image distahces from the ¢

focal pointss You mby have felt °
. «Q*

that this was hot a natural point ‘

- from which to start. A more logical ‘

. b . P N

starting point for meking measure- '
(-] -

4 : 3

ments would’be the lens.” » .

. If it-is desirable to meke TN
' measurements frqm the lens rather . Flgure 10
than the focal points, tt can be anaiyzed grdﬁiically Yy a translation from

R

the graph of Figure 10. il}e original graph, the origin was, in effect,

the focal point., We now wish to.have tlge_origiﬁ_zzepresent the 1ens°positiona

5 This requires a gréphical translation. - T N ¢ ] . /
M . s = " . : ..
If you recal{; in our original-data, the positrivé?gjec_tg Gistances R
. , \ s Ll 2t .. RN .
were measured to the left. The origin is now being moved from the value of e L
- N N g - & >
the object focal point to the lens position which s & movement to’ the Ariﬁt;‘ #
Thérefore, the translation is teking place im g'bhe negative diregtioﬁ; m@ N
. N ¢ y o
distance from the lens position to-the focal.point is "', Prom this it ‘-, °f .

& N . T -
*  follows that the translation would have td be made by an amount T both“"dowg- I
N , N . 2, :
%ard end to the left. That is, we are shifting’the axes in negative direc{:ions” * v
by ‘an’ amount f£. This shift is achieved by adding an smount -f tosthe object f_?/zl

values and image values., The equation becomes
~

< . . p o .
Shnne X"'-(-f\=x4_f2_f . _ " By
. . R - : %

’ o)
4 . ‘ R C
- . L] &
! y . <1kQ- % 7 :

: ’ O - ". - - }.j:lq\:' h e
"ERIC. - “; ;

. @l

.
ey
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ties X and X' are object and image &_.e;9ces meggared from the tens,

[MC

. . o

H

We haVe added E/g/ﬁorizontal translatlon { f) and the verti\el translation

,(_fl_to the varigbles. Now, multiplying the- equation by X + ( f) we find .

(-8 K-y, :

RéﬁoVe the yarentheses by applying the distributive property,
<

XX - XE - X'E o £R = 2L "

s

éubtracting f2 from'eacﬁ»side of the equation, . C s )
. - . L ¥
s . - 1 = . 113 P @
“ XX Xf ‘X'f 0 " . e
Rearranging, . ', "t : . *
——— e ‘ ) . v "
LI H’ = Xf + X’f . . ) »
- . . <., . -
Multiplying the equation by XT%? , We have . o PR ' !
o . 1 - l,‘+ 1 . .
~ £ X X 4

This is prec1se1y the equation for which we are “locking & ;rhe guanti-

|
- v - : |
Now take a sheet of frosted acetate with, coordinate axes. Place it }

over your graph obtained from the leng data. Translate the axes an amount -f in
both directions. The curve then appea;;hg on the frosted acetate is a repre- 5 r

|
sentation of the translated curve. . - ‘

We may conclude that the ability to translate coordinate axe3 is a
technique that is extremely valdable. In this case it has erased the apparent
physical difference between the two ways to measure the position of object and

, image. Tﬁese two position descrip£ions change the maiﬁematical description of

-

our graph, but do not change the shape or relative position of the two portloqg
of the hyperbola.

’

o . Exercise § | . ,' o
' . 1.1 1 e
1. Start with the equatig 3 +-i3 =3 whose 51gn;ficance is described in

the text. Algebraically translate the axes to the right and upward by

, the amount f in each direction. Y

. 1 L1
(Hint: form the equation TFF TF W
+

2. Algebraically solve the equation %




~

» .y ﬁ‘%&
‘3. Y. =\x 3-x3 is a hyperbola'in the form found in Problem 2. « By how
much and in what directions ‘would one have to translate the axes

toputitintheformy-—';—{{-?' . R »
< L, Translategthe axes used to describe the parabola y = * - bx + b go

v - ‘
that the vertex of the parabola lies at the origin. By what amounts

S -~ .
- and in what directions did you translate the axes?
ey b/( ! ‘
i ' -, N .
5.10 Curye Sketching . . . >
r ] ‘ :
In our experiment with,the simple lens-we used the two focal points of

N

the lens as points of reference for meaéuring the location of the object and

image. In so doing we found the function X' = ; + We remarked in the pre-

vious sections that it may be awkward to measure distances from imaginary .
We then elected to locate’ ‘

4

points that could nefther be seen nor touched.
bothfthe object and image w:;th respect to the position of tfm lens. These

N two quantit;l.es are shown in Figure 11.
-

»
.

d— X ) 3
[ LA A
T . N " ll .
- - .V
pin lens 4 image ,
) oY ) of pin~ -
Y ' ¢ : .
E - Figure 11 o
; . The relation between X and X' is given by. -2 .
» LR s - .
Tk - 1,1 _1 g
N = b= == . .
w0 F , X Xt f? ’\\’
y .
? ? vhere the constant "f" is the focal length of the lens. In Exercise 6,
’ Problem 2, you solved the equation--)%,-i- 3= % for X', The answer obtained
should W% - 7. 2y
R ‘ Xf ‘ .

1 o
‘ XixroE

N ;
This equation expresses a relation and provides us with an excellent
n

opportunity to perform an exercise in "curve sketching + The language "curve
sketching" refers to a rough sketch of a curve that is made after observing «

few important features of the equation. Few, if any, exact points need to be

L

«

-y
e “-
a0

)
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obtained to make the sketch. The generel idea is to make the sketch just to

see "how thiﬁgs go", and not to obtain exact representation of the graph.

To sketch the equation Xt xx_f 7
paper upon'vhich we draw the horizontel (X) axis and the verticel (X') axis.

, we start w'.!.th a'sheet of coordinate

3

The succeeding steps taken to sketch this equation are listed below. .

(1) Let us consider the above equation when the value of X is large and: ~’
. positive. Because f is relatively smell with respect to X, the de-
N nominator, X - £, will remein practically the same as X itself. ' If
' this is the case, the entire fraction, and therefore X!, will have a
value only slightly greater than f. :For example, use [ L 6 and

) X = 1900. Then _ .
(1000)(4 6000 _ ¢ o) .
1000 - 99l ~

Therefore, for large positive values of X the graph of the curve will

stay close to the vertical coordinate X! = f.

(2)  As the value of X becomes smaller pos:{t_ively, the difference between X
T, and f becomes smaller, and therefore the value of the fraction becomes
larger. For example, agein use f = 6, but no»} have X = 100. Therefore,

1006-600=6h. Using £ = 6 and X = 10, we find thét ’

. L =
X' =150 - 9k .
xr = {200(6)°_ 80 _ 5y Xt ‘ '
o =30 - =T = 5. We see tl':at the values igcrease very rapidly

. ag the X value comes closer to f, and the curve becomes very sheep.
L] - -3

(3) When X = f, the denominator of our equation becomes zero. éi‘nge such

0

& ’ an expression is u.nde'fined, we cannot graph this point. - . [)
Since “

Using these three steps we can sketch & portion of our curvé,
- both the kvand X? discussed thus far are positive, the grarh of the curve is
confined to the first quadrant. See Figure 12.

- ,ox
- L‘ l
. . . I\ - ’
3 Xt =2 f . | ) .
— - = _.l__.;_._...__ — }\, 2 /'/
. \ | X 9
/7
2 3 : - - v
} TR P PO A
3. ~LMat ~
3 / * o ' - l 7 :
: - e 'I . Wt TS A g
" - ’
i x
: ) ' i } X=rf .
/‘ »
. Figure 12 ' ~ T
“ v, . “ . < N M «
§ . 1 ! I ” p lh3!té9 P
4 (S - i * Rl .
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and vertical directions.
and X =

in Figure 13.

X

The graph of the curve approaches the value of f in Yoth the horizontal
Therefore, it is helpful to draw the lines X! = f

r

f on the graph.

No¥ 1€t us consider the eq’ﬁa’pion when X is less than f, but still posi-
tive.
The numerator is Stlll positive. ‘Therefore, the value of the fraction
For X values only slightly

The denominator of tihie equation, X - f, would then be negative.

and, consequently, of X!, is negative.
smaller than f, the denominator becomes a very small number. Therefore,

the fraction itself becomes very large and is negative.

r

When X equals‘ zero then the value of Xf is zero. The denominator is

not zero. Since the numerator is zero, the value of the fraction is
~ N .

zero. Therefore, the graph of the curve passes through the origin.

As X becomes negative, the value of the numerator. becomes negavive.

But the value of the denominator also becomes negative». Therefore,

the value’of the fraction is again positive.

As X becomes very large and 1s still negatlve, the value of the denom- "
inator changes very ll‘ot;le. The value‘of f is verymsmall in relation ﬂ
to the large value of X, and ’%he difference 1n the denomlnator remains
As we detemmed m (l), Jthe value of the fract:.on

Since both the ®

very close to X.
approaches f as the value of X 1ncreases neggtively.

numerator and denomlnator are negatlve, the value of the fraction re- .,

mains positive. °; _— ‘.
.
[y L) -

Using the last four steps, we can sketch the portion of the curve shown

l“hl#.. . < . ,
T . 4/ * ,. J-S‘i-} .

] . JEUENN
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" LN
\ Z/ : R
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: . To sketch the graph of the curve for the equation Xt j—{}—(f—f we ﬁuét Lo
- o combine the eonclusions we have reached in the se en steps above.” lFigure 14 ‘
illustrates the ske%}\ of the graph for %hgwtion. .

? v

' .
ke \
. i a 1 55‘)“
- ) Y X' ~ \y ?
. T - s .
¥
. R \
.g- I ,,1 " S
4 3 .
400
=" 5, L4
2 - £ 4~ 1’
; .
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L2
- o
~
‘ “ i
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o | Lo~
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Figure 1k )
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Go back over the seven features once more, .and check each against the

sketch. You should practice using sketcl‘jxing procedures such as this. With &

little practice, sketches of most curves are easily drawn.

5. e P L Lk FURY P S - oo

. ‘ Exercise 1
v& - . '
Sketch the following relations for all"mssibl e values of x:
) ' ’ 6 .. i
‘:f»" l. y - x + 3 . e . . »
-4;,—«71.»' o= _,__x - va v A s ~~<‘..;~. - N E T UL T -
IR A S Y- |
L. 3 Tyexx-2) | R 4
Y, y=x2-2x-+l T . ) "
5, v =2(x + 1) N . K
" - ‘
, EIS »
- ’ ’ Y
' ) £
, - 11&51 i ,

ot ) ' . B . . \
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.51  The Tloating Magnet -

Perhaps nothing is more fascinating than a magnet. Two mégnets may
attraet or repel oné another. Magnets will attract.tacks, paper clips, nails,
and any othér object that contains iroh. Iron filings placed on a card ove;
a magnet will formm a beautiful pattern. Very strong magnets can be made by
winding a coil of wire around a nail and attaching the ends of the wire to a

*small battery. l . ;

+ .

.

.Magnetic phenomena are, however, extremely difficult to analyze. Mag-
nets are so n1ce--but what can one really do w1th them? The exper;ment tHat ’
follows represents one Of the few experiments w1th magnetlc phenomena that

provide & real opportunity for matﬁematlcal analysls.ﬂ ?

" The magnets that will be ked are small c*reula* ceranic magnets about
an inch in diemeter that Have holes in’ the1r centers. (?our of these, each s
g-lnch thick, gre needed, ‘or two that are ﬂ-lncn thlck. A knitting needle,
paper clip, centimeter ruler, and a sét of standard masses will also be re-
qui}ed. The experimental arrangement is 1llustrated in Flgure 15. The top
two magnets are _repelled strongly away
from the lower twqf They seem to float
in midair without visible means of sup-
port. The knitting needle (cut off to /
a suitable length) passes freely through
the holes in all four magnets and °

throught the hole in the mounting board

that is used for suppory of the entir7 N
setup. .

>

Because the npper magnets canno?
ﬁslide off the capped end qf the knittfng
needle, the needle and upper magnets
move togetner as«a unit. The lower . ]}
‘magﬁets slmply rest upon the meter stick.
The upper magnets, together m1th ‘the -

knitting needle, are free to bounce up

and down with the slightest bush.
Figure 15 .

-

M We wish to 1nvest1gate the manner

in which the separation distance between the magnets decreasas as the load :~a.¢;'

suspended from the knitting needle is increased. In this experiment, the

selection .of tite twophysical qqantities of‘interest is rather clear-cut.
. \ T ¢
. . ) R
A . 6 - : 2

v
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L o
We wiﬂl salect a load ([), and correspondrng to this load there will be a
separation distance between t‘,he magnets s)

'

|
!

1 ~
] b
|

of the functiOn vwhile the separation distances are its range.

The 084 values are the domain

In per:t‘orming the expemment, it is perhaps ‘best not to attempt a

( diree'b measuranent of the separation distance.

on the- needle one way or another.

The magnets may tilt slightly
Instead the distance (d) between the cut

end of theimi‘lzt:.ng needle and the undervside of the mounting board should be,

meéasured. This measuranent should be read t0+0.1 mm on your scale by estimat-

ing tenths between adjacent diVis:.ons.

distance’ (s) are shown in Figure 16.

A load of about 160 grams will

reduce- the separation distance between

the ntagnets “to less than/l mm, SO if

3 we load the knitting needle plunger in

20-gram stéps, we will obtain ajout

nine readings.
*

‘mm" .

Label the firste column
~ of your data sheet "load ( {) in grams"
and the egcond column “distance (d) in
(See Table 2.) Be sure to record
‘tie veffle of d when-only the mas)s'of the

The distance (d) and the separation

°

]

needle itself is applied to tiie upper .

- magnets.-

When tsking these readings,

¢+ tap the needle gently to make sure that
the?riction between the neédle and the °

F T.
y ;é— . -
-} 4 R .
4 et . y 7 .
sa . —~
: ) .
’
. e [
. ' U
Fig'uré 16

holes tHrough which it passes doeg, noxb influence the results.

4

i‘or s, the separation dis

-

-

-

(3

[

together and finding the corres-ponding value of &. Call {t d

values of s are then\obtained from.s = d0 -d. B
that this equatidn is the correct oné té use.

We must now ctange the measurementswf d into the corresponding values

t{nce. 'l‘his is done easily by forcing the magnets

The required’

e sure.to convinc'e yourself

Place 'the s-values found for,

eachg load _in-codumn 3 of_your data table. g fo VS
| . o ¢
- ! e ] 1 s values | calculated
load ([ } " | distance (&) s 4 «s. 2 m - y)
in grams Jin mm valyes | -valugs spacing © ‘values
- v ) - - ,
/ T o » \‘
2 * - o
I ?;? { _\
" 3 . *' Y '. ‘ - >
: ! ¢ " Table 2 ¢ Yoo -
» N
> 147 > :
3 -~ M \, pow ?
: . . \ ) 1 D . \I R
. ) . s
) &, . A2 *
\
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i 'I‘he desired data function is now shown in colums 1 e.nd 3 of your table.

r\-o D

| The! values of the load L are the damain of the ﬁmction, and’ deter,-
. mine the scale of the horizontal a.xis. The corresponding values of the separ-
L " ation distance 8 determine the scale along the.vertical axis. Plot your
o ( 7,s) pairs and draw your "best ‘curve" through or near these points. This

best curve is a physical model which assumes that for any intermediate value ...

of the load, a corresponding value of ‘the separation distance would have been .

fou.nd. Your graph of the physical model for the "floating" magnet should now
. ook something like the graph shown in Figure 17T. )

o ! .

[

E reb - \ ‘
169 . ]
. .S. < ) 3 a " @ . + N
B Y BN , :
a . f ' FLOATING MAGNET RELATION
) , P
L5 10}
9 -
ad 8L W
-t
8 6} 3
s ] ‘
g 4
o ! -
o, .
g o}
' - - 1 £ L
. 20 L0 60 80 _100 - 120 140 16¢C
L ~ ., ) load (/) in grams
~ ’ ~ ) ‘ & . < - “ A »
, v ' - . . B U
v . - e . o . . DAV
[ 4 ! 2" - k4 * S ’ d ¢ .
e . Figuré 17 . oo >
Ve b ] ) . P . . . , " ;
. + .- ‘ . M “
- 3 ! ~ ‘.' . A
B > 512 Search for a Mathema.tical Model . s
ST T Your “cdrve of the kind shown in Figure l7 is a representation of the "‘ .
- . results of the experiment, and we must now find+a ma.thematical model’ (an .
p equatfn) which describes this curve. At this point it might be to our ad-
. vantage to look back at all the kinds of graphs we have encountered. One
~»
of these might well be the one wé are J,ooking £IF. Figure 18 on the pext.
Bl e
v age shows the eight ‘graphs studied in Chapters 1, 2 R 3 and 4. We might call
’ i it a "Gallery of Graphs".” . ’ L r.

.
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Figure 18(a) shows the linear relation obtained in the'FalLling Sphere

: Experiment. The converse relation is also linear. This relation was also

encountered in the Number Generat,

Experiment. The relation shown in‘

‘ Figu::ce 18(11) was obtained 'in the Wick and Horizontal Metronome Experiment.

+ The parabolic relgtion was found with the Osecillating Sp'ring and shown in

. Figure 18(c)y

This was found to be the same as the converse of the Horizontal

Metronome angi'Wick relation. The reciprocal relation for the SirPle Lens,

Figure 18(d), is identical to its own converse.

.

- (a)
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s o
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“ Ve hope to ﬁnd a graph in the gallery that has a shape similar to the
shape we have already obtained for the floating magnet relation. Perhaps we

may use only a portion of one of these graphs to describe the magnet relation.
As we scan the "Rogue’s” gallery, we-see three possibilities:

the dashed portion of the parabolic relation at the left in

(1)
: Figure 18(v);
v ' . ‘ . . - }
R (2) the dashed portion of the parabolic relation at thé left in ,
‘ Figure 18(c)s ‘
(3) the solid curve portion of the reciprocal relation shown in

Figure 18(4d).

y

Let us exasmine thege possibilities one by one.

7

If we were to use the left-hsnd portion of the upright paraboles in
Figure 18(b), we would have to translate the axes to the left so'that this
part of the pa?abola would appear ip the first quadrant. See Figure 19(a).
It must appear in the first quadrant , for that is the location of our float-~
ing magnet ‘relation.

Having translated the axes in this way, however, we
find that the péra‘bo}a’ﬁhows one séparation distance between the magnets.for
two different loads, as shown by the dotted line. This does ‘not represent
the physical situation and therefore this parabolic model cannot he use<_1. )

j 4 RN , ; . ) *
51 sy .

1 -

¥ |

N N (a) . - . ®) R
N . . ., ~r P P " -
. .. - Figure 19

; If we were to attaﬂpt to use the lower glf of the parabole on its

‘' side, Figure 18(5), a similar situat;on would confrent us. We would now
have to ¥ranslate the axes downward to place the dashed portion in the first
" quadrent, as in Figure 19(1v).

two different sepérations of the magnets for one _loa,d', ag shown by the dotted

TR e )

Now, however, the parabolic model would predict

151

1

o
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line. Again, this is a physically impossible situation and the model must be
discarded. o '

o
@

Suppose in the two cpses above, we’try‘ to ‘solve our problem by “thyok-
ing away the half of the parabola we do not want. Then, in each case there
would be an artificial ln}nitation In one case the domain of loads wpuld»,.‘t}e
limited, and in the other case, the range of s“epai'atioﬁ woul& be limited. .
Therefore, we must reject the possibility of half parabolas, for in both cases t
the limitations do not correspond to the phy51cal situation.

’

, No objections can be raised in the case of the reciprocal relation of

Figure 18(d). The graph needs no translation to be similar to the floating
magnet gra‘ph. It also does not 1§1d1cate multiple ’l:%a single separa-
tion, or multiple separations for a single load. ,ItAs, therefore, the one
we will empdoy in our attempt to describe t‘he floating magnet relation.

5.13 The Reciprocal Relation \ ,
-

v

The function we have obtained consists of the ordered pairs (f’%*s) that ,

, are on the "best curve" we have drawn through the expérimental points. W.eh

c-
i

-

Q

LA i 7ex: Providd by ERIC

have now decided to represent this curve by a reciprbcal relation. A4s you will

‘re¢all from our study of the Simple Lens, the graph of the converse relation

is a curve which is identical to the graph of the reciprocal relation itself.

"For the magnet relation,, this means that we could follow either of two pro-

cedures. We could form & new domain consisting of L -values and plot these
against the 'corresponding s-values in the range, or we could use the ‘converse
magnet relation coﬁs'.tzs‘bing of the ord.eregl pairs S, ﬂ ), form & new domain
_cohsisting of -l-values, and plot tbese agalnst the correspondingd_values :
the .range. . * R

Faced with tihese' two possibilities, we must makeé a chqgice.- If we rey.
member that the very first velue of the load ( (L ) that we placed in our table
was O, we can see immediately that the correspcmding value of 1 is no‘t de-
fined., No similar difficulty arises. for -sl- because s d1d not assume the. valua
0. Let us hope, then, that a ‘graph of pair® (— I} will yield a straight

line. If it does, we will have found the reclprocal relation we are seeking.

Before going farther, however, we should graph the converse magnet re-
laetion which consists of the ordered pairs 8, 1). Replot your data points
and draw a new "best curve" on a sheet of coordinate;paper to obtain a graph

of the converse relatipn. Your rew graph should be similar to the one §hown

rcit. B 152 . ',4‘
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g : Figure 20
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Now we must tabulate g'values corresponding to each value of s. Place
these in column 4 of your data table. Now graph the (l‘.l) relation using —
the horizontal axis for,% values and the vertlcal axis for the values. This

ig the relatio%ﬂWe hope is a linear one, for if it isy the relation between s
and £ will then be a reciprocal relation.

Draw a "best curve" through tHese points. When this is done, your

graph should gppear very similar to the one shown in Figure 21.
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stretch of one's imagination. This means also that the relation between 5.
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and is not a reciprocal relation.

But look more closely at your graph. Althgugh the entire graph is
most certainly not a line, the first four points (small loads, large separa-
tions and 16w -l- values) do line up fairly ‘well. ’l‘his~ restricted part of t;1e
graph shows 8 linear behavior. But when Lhe loads become too large and the
separations too small the graph curves off to some new sort of relation.

Let us draw & "best straight line" through these first. four points and
4 -
find the corresponding mathematicsl relation. See Pigure 21. It is true

-the mathematical equation will not describe the remainder of the graph but

at least it should provide an accurate description of the behavior of the

floating magnets for small load values. ¢ » o

v

The equation representing this "best_sdtraigpt line" will be of the
form ‘ l
1
4= mn (-s- - c). .
This is the familiar po:.nt-slope equation. dn this firm it is relating”

—toJ < s

”»

The values of the constants "m" and "c"

are found- from the graph of :
the line. , The constant c is not equal to zero because at "zero load" we

still have the loading of the upper meghets and needle which 1nfluence the
separation distance. This, then, is the mathematical model we have been seek-
ing. We must recognize that this model does not pretend to describe the en~
tire behavior of the floating magnet, but only that part of its ‘Behavior that
corresponds to small loads. Notice also that we have obtained a relation

that is the cqnverse of the experimental relation. The above relation pre~
d1cts the values of the load for certain fixed values of the separation dis-

tance. In the e;&riment, the separation distance was determined by the loed.

One final step will mske our a.nalysis complete. We should now use this
equation to obtain pairs (s, L) to compare difectly with the results of our
experiment. We are sure that these ,calculated.points\will“not match the ex~ -
perimental curve for large loads and small megnet geparations. In spite of
thig, we will calculate to see how good the mathanatical model is for large
separation distances and how poor it is for. small separation distances.

g

In column 5 of your data table select s-values “spaced every 2 mm over
the entire renge of the original function. Pléce the calculated values of

~ . ro
Tpis graph is disappointing. It does notsseexn to be a line by any ‘o

1




l
»

’ t‘.re load ( _I ) found from your equation in column 6. Plot these calculated
points on the same sheet of coordirate paper used to display the converse
relation (as in Figure 20). Draw a dashed line through these poin_ts’ to dis-
tinguish the graph of- the mathematical model from the graph of the experimental
results. ‘ . ‘

. . ] —" , ; "\

-

-

How do the two graphs compare? Youyshnou.ld~have obtained a result
gimilay to'the one indicated in Figure 22. -
- > .

1ok \ .
\ . ,
g 120 ™~ \\ ' A -
& \ Data points -
w2o0F, N . P i © B
5. ) \ . Calcuated points @ .
— 980 -~ \ _ .
AN
-~ 60p
g‘ -
o 4o
= -1
20 +
0 §
7 2
Separation .(s) in mm v
" Figure 22 | \
’ We see that the curve calculated from the mathematical model represents

the behavior of the floating magnet for loeds that are.sufficiently small, ’
. Predictions from this equation for 1arger loads, hGWever, would not agree with

the gctual behavior of the magnets.

The restriction that we have placed Y

floating magnets is an extremely importent onf. We claim only to have an

equation ‘that "fits' the experimental curve for smell loeds and relatively
A large separation distances. We may' descfibe this restriction by say’ing that
the domain of separation distances (fo. the converse relation) mst be re-
‘gtricted. In e previous section the d ot -the ’siﬁpﬂaﬂeﬁ ks all of the =
'po'sitive numbers. In the present expe t we cannot use the whole set of
positive numbers. The domain of the present relation is governed by the
< ability of this function to follow t}% behavior of the magne"ts. '

’ R . ; ’ )

W '

the mathematical model for the °

gy

o>



Exercise 8

1.;.4 In the Floating Magnet experiment we obtained the relation

-

e v 4= m(——c)

2

Algebraically obtain the converse of this relation. What seperation’
distance does it predict for zero load?

~

S

For a limited domain, the floatifig magnet function was found to be °

A = m(%-c).

.

What is the unit of m? the unit of c¢?

-_S)1§etch roughly the graph of'y = 2 for k < 0.

A particular reciprocel relation is y = %{ Find the elements in the
~ range that correspond to the following element$ in the domain:

10'6;'1o'h, 1072, 1, 162, 10%, 10°.

For the relation of the previous exercise, find the elements in the
domain of the relation that correspond to,/ the following elementsgkv )

the range: 10 6, 107" 10 2, 1, 102, 10, 108 .
oﬂ_ b R 12

Locate the x and y intercepts for the relation y =

¢ -

—fork>0.
x

[y
_ 5.1+  Cunye Fitting . .

Let us restate the procedure we used in the previous section to find a
methematical model £or the magnet relation. We found thet a mathematieal
model could be used to represent the results of an experiment if the domain

4 of/{his mathematical relation wa,s sultably restricted. Graphically we see )
- that the curve for the model and the curve representing the data follow salong
- together for a while, bu‘t soon their paths separate; We might say that the
" curve of the mathematical model "fits" the experimental curve in one region s

but not in others.

Suppose that we had been interested, in findi-ng an equation that would
acc'urately describe the behavior of the magnets for large loads and small =
separations rather than for small loads and large séparations. Our previous
model would be a poor one. But do you suppose it might be possible to ey gt
a reciprocal relation to the experimental curve so that the situation for
large loads would be described? . N




o ’ . :\' 5‘ Lt
The best way to answe¥® this question is to go back to your grqaph of the

(-,f) relation. See Figure 21. 3{e drew a'best straight line through the

first four points“before. We could, however, draw another straight line B )
through the last three points. These points seem to line up fairly well. .
‘This would give us a z;ew equatiox} like the oné obtained previously, but with
different values of the constants.e If now we were to calculate (s, ) 'points

from this model and graph ‘Qan, we would expect a "fit" to the experimental\-‘\f
data along a quite ‘different section of fhe experimental graph. We would now ‘
have to impose new restrictions upon the domain of the mathematical represent- B
ation. It is important to note, however, that this model may be just as good

in its domein and range as the first model was for small loads. and large magnet °* =

separations. e

o

. In generdl, we are able to fit a reciprocaql rele,ti;:m to the experimental
relation for the floating magnets over any restricted pa-rt of ths experimentél .
curve we choose. \_'I;h\is kind of procedure is called "curve fitting".

It should be pointed ou(}:‘lt‘:hat \::he reciprocal relatiomused to represent
the behavior of the floating magnets not the only reciprocal relation that
. "might be used. We found th‘at was & i&\near function of -i- over a l_imitezi ‘
domain of -l- values. We might also have ti'ied to determine whether A could be |
- considered as a linear f‘unctlon of 12, or even % .. We know that whétever
trial function we choose, the separgtlon distance (s) must become smaller.and |
smaller as the loag ,,[,) is increased. One of these new reciprocel }elatiOEB . L4
might very well yield a much better fit to the expérimental relation than“the
one used. By "better fit" is meant only\tghat‘? the graph of the mathematical™
r"', ’ equation mighit represent the experimental relation over ﬁarger domain and - -

range. . o L

Exercise 9 . ' 4

v
® FIN

'A beakéribf‘water was heated on a hot plate. * 'I'he tenperature of the water was
recorded every minute arid the following aata wasg obtained-

*,




Time Temp.
) (min) ~ (°c)
: § 20 ~
1 3k
. ' 2. k7
\ 3| @88 - ' e
) b - 67. y - ‘
) 5 B\ ’
) : 6 - ’ 82 ”‘K/ R
7 86 . , ;
8 oo '
- . N
.1, Graph the time-temperature re!}.gtion. Over what range and domain wouId
you say that the rélation 3?%, linear one? ‘ - _j”fi'“ -
é. Draw your best straight limi mvepresent the t‘:linf_-‘)t_empgrature relation

for a restricted time domain. Find the equation th&‘t represents this

line. “ ¢ - )\ :
PR '’ oo .

3. * Use the equation obtained in Ebcercise 2 to calculate\dsemperatures for

l\

each of the nine time readings. What is the error in temperature pre-
diction at times of 1 min; b min; 7 min ?

k. In the Floating Magnet e@eriment you made a grap% of the reciprocsal
of the separation distance (—) along the ‘horizontal exis and the load

4) along the vertical a.xis. Draw a best straight line through the
‘Points which represent loads of 120, 140 and-160 grems. Obtain thes
equation. for this line. Calculate load values (.4) “from this equation, 1
selecting 5 or 6 equally spaced s-values that will %ve loadg in the (
renge from 110 to 170 grams. Graph these calculated points atid compare

' ' them to your original expe:;:l.mental points. Over what rq.%‘ge of loads o
R ¢ .
do you find a good "fit"? ‘ . B o
M K ' . ~ it
fre . e ! . H
- . b * ' - ° Rl :‘ - - 'o -
*5.15 -Summary . - R ; . . J

In- this chapter we have studied scme chan‘teristics of cei‘"‘"tain curves.,
We learned the meaning ‘of theé slope of a curve at a given point. This slope
%as found to have specia.b?hysical sigm.ﬁcance as veloeity. Our guesg was -
verified to &ir satisfaction by compar_jng the measured veloecity with one
calculated from the graph. ‘ ~ - . . \
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- This chapter, then, began our expe;ience" with the morée complicated

o
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.+ From the data obtained in the Lens Experiment we were led to the study
of the reciproeal Junction. By analyzing some properties of the hyper'bola,
it was found that the curve could Jbe sketched thi-ough a study of its equation.
While the curve drawn in this way was not an accurate physical model, a good
approximatiod wes obtainéd. Bk

~
Finélly, after workig\g}\&h the_data' from the Magnet‘l'}xperme'nt, we ¢ : v

letrned that not all curves would fit into s:hnple groups. This data presented

ua with the pro'blan of a complex function from which we could arrive at only .

partial solutions. = -

N4
r

Y

>

curves. As you continue to study mathexﬁatic_s » other more rigorous methods.of
o'btaining scme of the above information will be found. 2
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. GLOSSARY g ‘ )
: = Part III

° - ’ ¢’
R . . 4

ABSOLUTE VALUE -« The absolute value-of a nonzero real Qimber is the greater

. of that number and its opposite, Tne ab301ute value'of zero is zero.

»

*AMPLITUDE -~ Maximum displacement on either side of an equilibrium position.

.. AMALOGY -- A form of mthematicai inference based on the agsumption that
prgblems which have a similar appearance will have a similar tre‘gtment.

ANGLE OF . INCLINATION -- The angle measured between the horizontal axis and
the given line.

COMPARISON PROPERTY -- If a and b are real numbers, then exactly one of the

- 1)

foplowing is true: a<b, a=b, b<an -, . R

CONJECTURE -~ A conclusion reached without sifficient evidence for definite .. '

AS

* knowledge, .
) CONSTANT -- A constant is a number that remains unchanged during the course
s of a particilar discussion. - T ; . . ) .
) )
CONTINUITY -- An uninterrupted succession in space of time, s
. . 7 . e o 7

COI:WERSE -~ Reversed in order, relation, or action.
, . .

COORDINATE PLANE -- The plar@i@aining two perpéndicular coordinate axes.
Points in the coordinate plane are'determined by order@ pairs of real-
punbers (coordinates). N o

-

DEFLES‘.FIQN -- The amount of bend (as indicated by a pointer relat‘ive to.a

S , )

: fixed scale), . .

[4

- DERIVA'I’ION - Statements which show that a result is & necessary consequence
d&_&i‘ously accepted statements. ’

DISPLACE -- When a8 directed mbvement of § coordinate axis is made, we say .
that the axis is displaced. e ' t-

¢ | T
DOMAIN -- The domain fs the set of first elements of the ordered pairs in a

relation or function. .
4 R

o FQUILIBRIUM -- The state of being in balance which occurs when the resultatt
' .~ of all outside forces actihg on & body is zero.

FOCAL LENGTH -- The distance between a lens and the focal point. ] N
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'FORCE -- Force is a physical concept

5 gt

FOCAL POINT -- The point at ﬁhieh.a lens will cause pariilef r@&% to conyerge.
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which can bg?descrfbed loosely as the

push or-pull .on an object.

Y

FULCRUM -~ The point of support and rdtation of a seesaw or lever. .

- . N - R Y
FUNCTION -- A function is a set of ordered pairs such that each element of

the domain appears in one and only one ordered pairY'
GENERATE -- Tb trace opt mathematically by a woving point, line, or plane.
L]

IMAGE, DISTANCE -- The distance measured from some fixed p01nt to the image.
(In this text the focal p01nt on the image side of the lens is taken

«

‘as the fixed point.)

*
>

INTEGERS -~ The set of counting numbers, zero, and the additive inverses of

the’ counting nupbers make up the set of integers,
INTERCEPT -- The point on a number line at which a segond line meets it.

INTERPOLATE -- To find a value between tawo given values. -

TRRATIONAL NUMBER --'A resl number which cannot be expressed as the ratio

of an integer to a counting number. . .
)‘ '
LINEAR -- Pertaining to straight lines. . -

'

MASS -- Mass is'a fundamental property of a body. It is not the same as the

weight of the body. On the éarth's surface, the weight of an object is

proportional, tb its mass.

MATHEMATICAL MODEL -- A mathematical relation which represents the phy51cal

model. In most situations it will .be an equation.

MOMENT OF FOR .~= The moment df ‘force 15 thé turning effect of a force.

NEGATIVE INTEGERS -- The negatives of.the set of counting numbers.

NEGATIVE REAL. NUMBERS -- The set of real numbers assgciated with points to
the left of zero on the number line, where the unit’ point is to the

[

-

" right of zero, is the set of negative real numbers. ,

_OBJECT DISTANCE -- The distance measured from some fixed point,to the object.
In this text the focal point on the obJect side of the lens is taken as

"the fixed point. 4
- . ! N *
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ORDERED PAIR -- A set containing exactly two elements, (a,b), in which one
o ..el.ementj.s recognized as the first element. '

“ORDERING PROPERTY' FOR opposxms -- For real numbers~a and b’, if a <b, then
cbh<-a. - . . ‘o &

ORIENTATION ~- Arranging correctly according to given facts or principles.
- Determining @ position. |,

e

OSCIIJ.ATIN - Swingir{g from one extreme ,to anotlrer. ‘ To travel back and

>
¥

i*

forth between points. SR

[
-

PERIOD -- The time interval between any event and the moment the sam‘a3 event

. . . »
.

occurs again is called the period.
’ wf
"'I’ﬁiPENDICULAR LINES -- Two lines which meet &t right angles.

PHYSICAL MODEL -- A"single curve on a graph of the set of points which best

represents a collection of data. Ite«is an idealization of the behavior

4 >

of "a phys ical system. .

1)
-

POSITIVE‘I)NTEGERS -- The. set of counting numbers.

- . 1 - ¢
POSITIVE REAL NUMBERS --#fme set of real nwnberg greater than zero. Usually .
represented by the points to the right of zero on the number line.
: -

PROPERTY FOR OPPOSITES -- See Ordering Property for (pposites. -

PROPERTY OF ORDBR -- If a and b are two real numbers on the number line, and
a is to the left of b,pthen a < b.

QUADRANT -2 One .of the four regions into which the coordinate axes divide

.s . » S

the coordinate plane. . . . .

- -

™M

' QUANTITATIVE -- Relating to or expressible in terms of quantity.- Involving

. the measurement of quantity or amount. . ’ !
N

RANGE ~-- The range is the set of second elements of the ordered pairs in P
. relation or function. * . .
‘Q . . “

«RATIONAL NUMBER -- A number which can be expressed as the ratio of an i}teger
to a counting \qumbe o . . - A

REAL NU‘dBER$ -- The set of all numbers associated with points on the number*
line. A nuaber which can be represented by a 't!ir\ite or infinite decimal

expansions
. RECIPROCAL -- The multiplicati,ve inverse of a nonzero real number is called - '
= the reciprocal of- the number. The reciprocal of a veal number "a" (a £ 0)
is the number %- . Zero has no reciprocal. < ) L s
9 163 4o ' '
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_ RELATION .= A relation is a set of ordered pairs. When the pair (x,y)x is in
the set and we' use RTo represent the relation, we say that x Ry is-

2 LN
true. : R

r ! ~ a

REBELi’.-ED'—- Tending to be forced away or apart.

”

SLOPE -- The slope meagures the steepness of the 1nclination of a line. It

Y

is’ the ratio of the rise to the run.
»

. SLOPE OF A GURVE -- The slope of a straight line which just touches the curve

at a given point. -

-

TERMINAL VELOCITY -- When the upward resistive force eguals the downward
Y ,
gravitational pull on the object, terminal velocity has been reached.

TRANSLATION OF AXES -~ Changing the coordinates of a set of pointe to coor- -

dinates referring to a new set of axes parallel to the original-axes.

TRANSITIVE PROPERTY -- If a relation R has the property that whenever a R b
and b R c are true statements then a Rc 1is a true gtatement,

we say that R has the transitive property. .
*

UNIQUE -~ Just one. COnsisting .on one and only one. Leading to one and

only one solution e . \

VARIABLE -- A symbol which can be replaced by any member of a given set.

VE’LOCITY (CONSTANT) -- The slope 'of the line on a time- distance p ot. It

distance
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